Analyse de l'énoncé et Stratégie Pédagogique
Cet exercice, extrait du Brevet 2024 (Métropole), est un classique de l'épreuve de mathématiques, car il réalise une synthèse parfaite des notions fondamentales de 3ème : géométrie euclidienne, Théorème de Thalès, aires et pourcentages. Sa réussite nécessite une méthodologie rigoureuse pour identifier la bonne propriété à appliquer à chaque étape.
Section 1 : Géométrie (Pythagore et Propriétés du Cercle)
La première étape consiste à exploiter les informations données par le cercle. Le rayon $R$ est de 4,5 cm, ce qui justifie immédiatement que le diamètre [AB] mesure $2 \times R = 9$ cm (Question 1).
La Question 2 exige de démontrer que le triangle ABD est rectangle en D. Puisque les sommets A, B et D sont sur le cercle $\mathcal{C}$ et que [AB] est un diamètre, le triangle ABD est nécessairement rectangle en D. C'est une propriété essentielle du cercle circonscrit qui doit être maîtrisée pour l'examen. Bien que la vérification par la réciproque de Pythagore soit possible ($5,4^2 + 7,2^2 = 81 = 9^2$), la justification par la propriété du cercle est la plus directe et la plus attendue.
Section 2 : Théorème de Thalès (Calcul de Longueur)
La Question 3 nous plonge dans la configuration de Thalès. Les conditions d'application sont réunies : les points B, E, A sont alignés, les points D, F, A sont alignés, et les droites (BD) et (EF) sont parallèles. L'égalité des rapports $\frac{AE}{AB} = \frac{AF}{AD}$ permet de calculer $AF$. En utilisant les valeurs $AE=2,7$ cm, $AB=9$ cm et $AD=7,2$ cm, on obtient $AF = 7,2 \times \frac{2,7}{9} = 2,16$ cm.
Section 3 : Aires et Pourcentages
Les dernières questions évaluent le calcul d'aires et l'application des pourcentages. L'aire du triangle ABD (rectangle en D) est $\text{Aire} = \frac{\text{Base} \times \text{Hauteur}}{2} = \frac{BD \times DA}{2}$, donnant $19,44 \text{ cm}^2$. L'aire du disque s'obtient par $\pi R^2$. Enfin, pour trouver le pourcentage (Q5), il faut calculer le ratio $\frac{\text{Aire triangle}}{\text{Aire disque}}$ puis multiplier par 100. Cet exercice est donc un excellent indicateur de la capacité de l'élève à naviguer entre géométrie et calcul numérique précis.