Oui
Volumes
Aires et périmètres
Trigonométrie
Exercice Corrigé Brevet Géométrie - PDF 2015 - Ex 6
1 juin 2015
Troisième (Brevet)
Un classique du Brevet 2015 ! 🌟 Maîtrise le calcul de volume et la géométrie des triangles avec cet exercice sur la célèbre Géode. Si tu sais jongler entre les mètres et les centimètres, tu assures tes points ! 🚀 Correction détaillée et astuces de prof incluses pour viser la mention. 🏆
✅ Correction
🫣
Correction Masquée
Avez-vous bien cherché l'exercice ?
Introduction aux notions clés du Brevet 2015
Cet exercice du Brevet 2015 (Zone Nouvelle-Calédonie) est un incontournable pour les élèves de 3ème. Il sollicite trois domaines fondamentaux du programme de mathématiques : les Volumes (sphère et demi-sphère), les Aires et périmètres (triangle équilatéral et surface totale), ainsi que la Trigonométrie (ou le théorème de Pythagore) pour le calcul de hauteurs. L'énoncé s'appuie sur un objet réel, la Géode de la Cité des Sciences, ce qui permet de travailler la modélisation mathématique d'une structure architecturale complexe.
Analyse Méthodique de l'Exercice
L'exercice se décompose en trois étapes progressives qui testent votre capacité à manipuler les formules de géométrie spatiale et plane.
1. Calcul du Volume de la Salle de Projection
La première question demande de calculer le volume d'une demi-sphère de diamètre 26 mètres.
Le raisonnement : Avant d'appliquer la formule fournie ($V = \frac{4}{3} \times \pi \times r^3$), il est impératif d'identifier le rayon. Le diamètre étant de $26$ m, le rayon $r$ est donc de $13$ m.
Calcul intermédiaire : Le volume de la sphère complète est $V_{sphère} = \frac{4}{3} \times \pi \times 13^3$.
Puisqu'il s'agit d'une demi-sphère, il faut diviser ce résultat par 2.
Rappel Méthodique : Ne faites pas d'arrondi trop tôt dans vos calculs. Gardez la valeur exacte avec $\pi$ sur votre calculatrice et n'arrondissez à l'unité qu'à la toute fin pour garantir la précision demandée par l'énoncé.
2. Géométrie du Triangle Équilatéral : Hauteur et Aire
La deuxième partie s'intéresse aux éléments structurels de la Géode : des triangles équilatéraux de $120$ cm de côté.
Question 2.a (La Hauteur) : Pour montrer que la hauteur est d'environ $104$ cm, deux méthodes s'offrent à vous :
- Trigonométrie : Dans un triangle équilatéral, les angles mesurent $60^\circ$. La hauteur crée un triangle rectangle où l'hypoténuse vaut $120$ cm. On utilise alors le sinus : $\sin(60^\circ) = \frac{Hauteur}{120}$, d'où $Hauteur = 120 \times \sin(60^\circ)$.
- Théorème de Pythagore : La hauteur coupe la base en son milieu ($60$ cm). On a donc $h^2 + 60^2 = 120^2$.
Question 2.b (L'Aire) : Une fois la hauteur confirmée, on applique la formule $A = \frac{base \times hauteur}{2}$. Avec une base de $120$ cm et une hauteur de $104$ cm, le calcul nous amène naturellement à environ $6240$ cm$^2$.
3. Calcul de la Surface Totale et Conversion
La dernière question demande de multiplier l'aire d'un triangle par le nombre total de triangles ($\np{6433}$).
Le piège de l'unité : L'aire obtenue sera en cm$^2$, alors que la réponse est demandée en m$^2$. Rappelez-vous que pour passer des cm$^2$ aux m$^2$, il ne faut pas diviser par $100$, mais par $10\,000$ (car $100 \times 100$). C'est l'erreur la plus fréquente des candidats au Brevet.
Les Pièges à Éviter
1. Confondre Rayon et Diamètre : Dans la formule du volume, l'utilisation du diamètre à la place du rayon est l'erreur fatale. Vérifiez toujours deux fois cette donnée.
2. Les Unités de Mesure : L'exercice mélange mètres et centimètres. Une lecture attentive est nécessaire pour effectuer les conversions au bon moment.
3. L'Oubli de la Demi-Sphère : La salle de projection n'est pas une sphère totale. Diviser par 2 est une étape cruciale souvent oubliée sous le stress de l'examen.
Conseils de Rédaction pour le Jour J
Pour obtenir le maximum de points :
- Citez systématiquement la formule que vous utilisez avant d'injecter les valeurs numériques.
- Précisez l'unité dans chaque phrase de conclusion.
- Pour la question sur la hauteur, même si le résultat est donné dans l'énoncé (« Montrer que... »), vous devez impérativement montrer le détail du calcul (Pythagore ou Trigonométrie) pour justifier votre réponse.
Conclusion pédagogique
Maîtriser cet exercice, c'est s'assurer de comprendre comment la géométrie plane (le triangle) sert de brique élémentaire à la géométrie dans l'espace (la sphère). C'est un excellent test de votre rigueur calculatoire et de votre capacité à passer d'une échelle à une autre.