Vue fiche unique

Exercice Corrigé Brevet Statistiques-PDF 2021 - Ex 2

Prêt à dompter les stats ? 📊 Cet exercice du Brevet 2021 est un classique absolu ! Moyenne, médiane, étendue... tout y est pour te faire briller le jour J. Ne laisse pas des points faciles t'échapper. Révise avec méthode et assure ta mention ! 🚀

📝 Sujet

Chargement...

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Sujets similaires recommandés 🎯

3emeRecommandé

Brevet 2013 Asie - Trigonométrie & Statistiques - Ex 3

Thumbnail

Chapitres: Trigonométrie Statistiques

3emeRecommandé

Brevet 2018 Polynesie Ex 1 : Probabilités et Arithmétique

Thumbnail

Chapitres: Puissances Pourcentages ...

3emeRecommandé

Exercice Corrigé Brevet Pourcentages 2015 - Ex 4

Thumbnail

Chapitres: Pourcentages Puissances ...

3emeRecommandé

Brevet 2026 - Ex 1 : Statistiques & Pourcentages - PDF

Thumbnail

Chapitres: Pourcentages Statistiques

3emeRecommandé

Exercice Corrigé Brevet Proportionnalité-PDF 2016 - Ex 2

Thumbnail

Chapitres: Grandeurs composées Pourcentages ...

3emeRecommandé

Exercice Corrigé Brevet QCM-PDF 2025 - Ex 2 : Métropole

Thumbnail

Chapitres: QCM Statistiques ...

3emeRecommandé

Exercice Corrigé Brevet Stats-PDF 2015 - Metropole Ex 6

Thumbnail

Chapitres: Durées Pourcentages ...

3emeRecommandé

Exercice Corrigé Brevet Tableur & Pourcentages 2019 - Ex 2

Thumbnail

Chapitres: Tableur Pourcentages

3emeRecommandé

Brevet 2014 Asie Ex 6 : Statistiques et Probabilités

Thumbnail

Chapitres: Statistiques Probabilités

3emeRecommandé

Sujet Brevet Maths 2017 - Amerique Sud - Corrigé & Analyse

Thumbnail

Chapitres: Algorithmique-programmation Équations ...

Introduction aux statistiques du Brevet

Les statistiques et les pourcentages constituent un pilier fondamental du programme de mathématiques de 3ème. Dans cet exercice issu du sujet Nouvelle-Calédonie 2021, l'élève est confronté à une situation concrète : l'analyse des précipitations à Nouméa. Cette thématique permet d'évaluer la capacité à traiter des données réelles, à organiser une série statistique et à interpréter des indicateurs de position (moyenne, médiane) et de dispersion (étendue). Maîtriser ces outils est indispensable non seulement pour l'examen, mais aussi pour développer un esprit critique face aux données chiffrées rencontrées au quotidien.

Analyse Méthodique de l'Exercice

L'exercice repose sur une série de 9 valeurs correspondant aux mois d'avril à décembre. Voici le détail du raisonnement à adopter pour chaque question :

1. Le calcul de la moyenne arithmétique

Pour calculer la moyenne des précipitations, la formule est simple : il faut additionner toutes les valeurs de la série et diviser le résultat par l'effectif total. Ici, l'effectif total est $n = 9$.
Calcul de la somme : $147 + 199 + 40 + 67 + 47 + 54 + 104 + 45 + 63 = 766$.
Moyenne $\bar{x} = \frac{766}{9} \approx 85,111...$.
L'énoncé demande un arrondi au mm près, on retiendra donc $85$~mm. L'élève doit comprendre que la moyenne est un indicateur global qui 'lisse' les variations mensuelles.

2. L'étendue : mesurer la dispersion

L'étendue est l'écart entre la valeur la plus haute et la valeur la plus basse de la série. C'est l'indicateur le plus simple pour observer la variabilité du climat.
Valeur maximale : $199$~mm (Mai).
Valeur minimale : $40$~mm (Juin).
Étendue $= 199 - 40 = 159$~mm. Une étendue importante signifie que les précipitations sont très irrégulières sur cette période.

3. Déterminer la médiane : la valeur centrale

La médiane est souvent la bête noire des élèves car elle nécessite une étape préliminaire cruciale : le rangement de la série par ordre croissant. Sans cela, le résultat sera faux.
Série ordonnée : $40 ; 45 ; 47 ; 54 ; 63 ; 67 ; 104 ; 147 ; 199$.
L'effectif total est impair ($n = 9$). La médiane est donc la valeur située à la position $\frac{9+1}{2} = 5$-ème position.
La 5ème valeur est $63$.
Interprétation : Durant au moins la moitié des mois observés, les précipitations ont été inférieures ou égales à $63$~mm, et durant l'autre moitié, elles ont été supérieures ou égales à $63$~mm.

4. Calcul de pourcentage et fréquences

Ici, on cherche le pourcentage de mois où les précipitations dépassent $100$~mm.
Relevons les mois concernés : Avril ($147$), Mai ($199$) et Octobre ($104$). Soit un effectif de $3$ mois sur $9$.
Le calcul est : $\frac{3}{9} \times 100 = \frac{1}{3} \times 100 \approx 33,33...$.
L'arrondi à l'unité donne $33\%$. Ce type de question lie les statistiques aux proportions, une compétence transversale majeure du cycle 4.

Les Pièges à Éviter

Attention à la confusion entre moyenne et médiane. La moyenne utilise toutes les valeurs, tandis que la médiane ne dépend que de l'ordre. Un autre piège classique est l'oubli du tri croissant pour la médiane. Enfin, surveillez toujours l'unité demandée pour l'arrondi (à l'unité, au dixième, etc.).

Conseils de Rédaction

Pour obtenir le maximum de points :
1. Énoncez clairement la formule utilisée (ex: 'Moyenne = somme des valeurs / effectif').
2. Montrez vos calculs intermédiaires, même simples.
3. Concluez par une phrase réponse incluant l'unité ($mm$ ou $\%$).
4. Pour la médiane, écrivez explicitement la liste ordonnée sur votre copie.