Oui
Recherche d'informations
Pourcentages
Proportionnalité
Brevet 2023 - Ex 4 : Pourcentages et Vitesse (Corrigé)
1 juin 2023
Troisième (Brevet)
Le sujet de 2023 décrypté ! 🚠 Cet exercice sur le funiculaire est le combo parfait pour réviser la vitesse, les pourcentages et la lecture de schémas. C'est typiquement le genre d'exercice 'points faciles' si tu évites le piège des minutes. Maîtrise cette méthode et tu seras prêt pour le jour J ! 🚀📈
✅ Correction
🫣
Correction Masquée
Avez-vous bien cherché l'exercice ?
Introduction aux notions de l'exercice
Cet exercice issu du sujet de Mathématiques du Brevet 2023 (Métropole) est un cas pratique exemplaire. Il mobilise trois compétences fondamentales du cycle 4 : la recherche d'informations dans des documents complexes (tableaux et schémas), le calcul de pourcentages de réduction, et la maîtrise de la proportionnalité à travers le calcul de vitesse moyenne. L'énoncé se concentre sur le fonctionnement d'un funiculaire, un support idéal pour tester la capacité de l'élève à extraire des données numériques et à les traiter avec rigueur.
Analyse Méthodique de la Question 1 : Tarification et Pourcentages
La première partie demande une lecture attentive du Document 1. Il s'agit de comparer deux options tarifaires pour un groupe de 20 personnes (12 adultes et 8 enfants). La difficulté réside dans le choix de la bonne colonne : le tarif de groupe s'applique 'à partir de 20 personnes'. Comme $12 + 8 = 20$, le groupe est éligible.
Pour le tarif individuel, le calcul est le suivant : $12 \times 10 \text{ €} + 8 \times 8 \text{ €} = 120 + 64 = 184 \text{ €}$. Notez que nous utilisons le tarif 'Aller-retour'. Pour le tarif de groupe, on se réfère à la colonne de droite : $12 \times 8,50 \text{ €} + 8 \times 7 \text{ €} = 102 + 56 = 158 \text{ €}$.
Enfin, pour déterminer le pourcentage de réduction, on applique la formule de la variation relative : $\frac{\text{Prix initial} - \text{Prix réduit}}{\text{Prix initial}} \times 100$. Soit : $\frac{184 - 158}{184} \times 100$. Le résultat permet de quantifier l'économie réalisée par le groupe, une compétence essentielle pour la vie quotidienne.
Analyse Méthodique de la Question 2 : Calcul de Vitesse Moyenne
La question 2 porte sur la cinématique de base. Le funiculaire parcourt une distance $d = 448,5 \text{ m}$ en un temps $t = 8 \text{ min } 45 \text{ s}$. Le piège classique ici est l'unité de temps. On ne peut pas diviser par $8,45$ ! Il faut convertir la durée totale en secondes : $8 \times 60 + 45 = 480 + 45 = 525 \text{ secondes}$.
En utilisant la formule de la vitesse $v = \frac{d}{t}$, on obtient $v = \frac{448,5}{525} \approx 0,8542...$. L'énoncé demande un arrondi au centième près, ce qui donne $0,85 \text{ m/s}$. Ce type de calcul est un grand classique du DNB qui vérifie la gestion des conversions de temps (système sexagésimal vers décimal).
Analyse Méthodique de la Question 3 : La Pente
La dernière partie introduit la notion de pente définie par le rapport entre la dénivelée et la longueur horizontale. C'est une application directe de la trigonométrie ou de la proportionnalité dans le triangle rectangle. Ici, l'élève doit identifier les segments sur le schéma : la dénivelée correspond au côté vertical (segment $[BC]$ ou $[AE]$ selon la portion) et la longueur horizontale au côté adjacent. Avec une pente de $25\%$, cela signifie que pour $100 \text{ m}$ parcourus horizontalement, le funiculaire s'élève de $25 \text{ m}$.
Les Pièges à Éviter
1. La lecture du tableau : Ne confondez pas le tarif 'Aller simple' et 'Aller-retour'. L'énoncé précise bien que le groupe fait un aller-retour.
2. La conversion du temps : C'est l'erreur la plus fréquente au Brevet. Rappelez-vous que $1 \text{ min} = 60 \text{ s}$ et non $100$.
3. L'arrondi : Toujours vérifier si l'on demande un arrondi à l'unité, au dixième ou au centième.
Conseils de Rédaction
Pour obtenir le maximum de points, détaillez chaque étape. Énoncez clairement la formule utilisée (ex: 'On sait que $v = d/t$'). Pour les pourcentages, présentez d'abord l'écart de prix avant de calculer le ratio. Une phrase de conclusion avec l'unité correcte (euros, m/s, %) est indispensable pour valider la compétence 'Communiquer'.