Vue fiche unique

Exercice Brevet Statistiques-PDF 2022 - Ex 4 : Corrigé

Prêt à décrocher la mention ? 🚀 Cet exercice du Brevet 2022 est un incontournable qui mélange statistiques, tableur et calculs de vitesse. C'est typiquement le genre d'énoncé qui tombe chaque année ! En maîtrisant la gestion des données et les grandeurs composées, tu sécurises des points précieux. Ne laisse pas un oubli de formule de tableur ou une erreur d'unité en vitesse te freiner. Découvre notre analyse pas à pas et nos astuces de prof pour briller le jour J ! 💪📈

📝 Sujet

Chargement...

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Sujets similaires recommandés 🎯

3emeRecommandé

Exercice Corrigé Brevet Statistiques-PDF 2014 - Ex 5

Thumbnail

Chapitres: Statistiques

3emeRecommandé

Sujet Brevet Maths 2016 - Amérique du Nord (Autre) - Analyse DNB & Corrigé

Thumbnail

Chapitres: Équations Probabilités ...

3emeRecommandé

Sujet Brevet Maths 2019 - Grèce (18 Juin) - Analyse et Corrigé Complet

Thumbnail

Chapitres: Probabilités Triangles semblables ...

3emeRecommandé

Exercice Brevet 2016 - Ex 7 : Volumes et Proportionnalité

Thumbnail

Chapitres: Grandeurs composées Proportionnalité ...

3emeRecommandé

Brevet 2015 Maths Polynésie Ex 6 : Calcul Littéral & Tableur

Thumbnail

Chapitres: Calcul littéral Tableur ...

3emeRecommandé

Exercice Corrigé Brevet Sphère-PDF 2019 - Ex 7 : Géométrie

Thumbnail

Chapitres: Grandeurs composées Proportionnalité ...

3emeRecommandé

Exercice Corrigé Brevet Statistiques-PDF 2013 - Ex 3

Thumbnail

Chapitres: Statistiques Probabilités

3emeRecommandé

Exercice Corrigé Brevet Thalès et Aires 2016 - Ex 5

Thumbnail

Chapitres: Grandeurs composées Aires et périmètres ...

3emeRecommandé

Exercice Corrigé Brevet Stats & Trigonométrie 2024 - Ex 3

Thumbnail

Chapitres: Statistiques Pourcentages ...

3emeRecommandé

Brevet 2013 : Statistiques & Pourcentages - Corrigé Ex 1

Thumbnail

Chapitres: Statistiques Recherche d'informations ...

Introduction aux notions clés du Brevet 2022

L'exercice 4 de la session 2022 en Métropole est une étude de cas pratique centrée sur le pont de l'île de Ré. Ce sujet mobilise des compétences fondamentales du cycle 4 : l'utilisation d'un tableur pour le traitement de données, les statistiques descriptives (moyenne, étendue), les évolutions en pourcentage et enfin la maîtrise des grandeurs composées avec un calcul de vitesse moyenne. Ces thématiques sont au cœur du programme de 3ème et nécessitent une rigueur méthodologique particulière, notamment dans la rédaction des calculs et la conversion des unités.

Analyse Méthodique de l'Exercice

1. Maîtrise de l'outil tableur

La première question porte sur la syntaxe d'un tableur (Excel ou LibreOffice Calc). Pour obtenir le total dans la cellule B14, il ne suffit pas de faire une addition manuelle. L'examinateur attend l'utilisation de la fonction SOMME. La formule exacte est =SOMME(B2:B13). N'oubliez jamais le signe égal '=' au début, c'est ce qui indique au logiciel qu'il s'agit d'un calcul et non d'un texte. La plage de données B2:B13 englobe tous les passages du mois de janvier à décembre.

2. Calcul de la moyenne mensuelle

Le calcul de la moyenne est un classique des statistiques. La moyenne ($\bar{x}$) se définit par le quotient de la somme totale des valeurs par l'effectif total. Ici, le total est déjà donné : $\np{2801172}$. L'effectif correspond au nombre de mois dans l'année, soit 12. Le calcul à poser est : $\frac{\np{2801172}}{12} = \np{233431}$. Interprétation : En moyenne, $\np{233431}$ véhicules ont traversé le pont chaque mois en 2020.

3. Détermination de l'étendue de la série

L'étendue mesure la dispersion des données. C'est la différence entre la valeur la plus élevée et la valeur la plus basse de la série statistique. En observant le tableau :
- Maximum : Juillet ($\np{389250}$ passages).
- Minimum : Avril ($\np{62930}$ passages).
L'étendue est donc : $\np{389250} - \np{62930} = \np{326320}$. Ce chiffre élevé témoigne d'une très forte saisonnalité du trafic, accentuée par le confinement en avril.

4. Pourcentage d'augmentation (2020 vs 2021)

Ici, on étudie l'évolution du mois de mai. En mai 2020, nous avons $\np{179699}$ passages. En mai 2021, ce chiffre monte à $\np{305214}$. Pour calculer le pourcentage d'augmentation, on utilise la formule de variation relative : $\frac{\text{Valeur Finale} - \text{Valeur Initiale}}{\text{Valeur Initiale}} \times 100$.
Calcul : $\frac{\np{305214} - \np{179699}}{\np{179699}} \approx 0,6984...$
En multipliant par 100 et en arrondissant à l'unité, on obtient une augmentation de 70%. C'est une hausse massive qui s'explique par la levée progressive des restrictions sanitaires entre ces deux périodes.

5. Vitesse moyenne et Grandeurs composées

La question finale demande de calculer une vitesse en km/h pour un cycliste. La formule de base est $V = \frac{d}{t}$.
Attention aux unités ! La distance $d$ est de $\np{3000}$ m, soit $3$ km. Le temps $t$ est de $10$ minutes. Pour obtenir des km/h, il faut convertir les minutes en heures. $10$ min correspondent à $\frac{10}{60}$ heure, soit $\frac{1}{6}$ h.
Calcul : $V = \frac{3}{\frac{1}{6}} = 3 \times 6 = 18$ km/h. Alternativement, on peut dire que si le cycliste parcourt $3$ km en $10$ min, il en parcourt $6$ fois plus en une heure ($60$ min), donc $3 \times 6 = 18$.

Les Pièges à Éviter

Plusieurs erreurs classiques peuvent coûter des points sur ce type d'exercice :
1. L'oubli du '=' dans le tableur : Sans lui, la cellule affiche du texte et non un résultat.
2. Confondre moyenne et étendue : La moyenne est une valeur centrale, l'étendue est un écart.
3. Erreur d'unité en vitesse : Ne divisez pas $3000$ par $10$ sans réfléchir, vous obtiendriez des m/min. Or la consigne exige des km/h.
4. L'arrondi : Pour le pourcentage, on demandait 'à l'unité'. Si vous écrivez 69,8%, vous ne respectez pas la consigne de précision.

Conseils de Rédaction pour le Brevet

Pour maximiser votre score, soignez la présentation. Pour chaque calcul, commencez par citer la formule littérale (ex: "On sait que $V = \frac{d}{t}$"). Ensuite, effectuez l'application numérique avec les unités. Enfin, terminez par une phrase de conclusion claire et soulignée. Dans le cas du tableur, écrivez la formule telle qu'elle doit être saisie dans le logiciel, sans ajouter d'espaces inutiles. La clarté du raisonnement est souvent aussi importante que le résultat final aux yeux du correcteur.