Vue fiche unique

dnb_2015_12_ameriquesud_3_sujet.jpg

Exercice Première Spécialité - 2015 - Ex 3 : Probabilités et Arithmétique

Révise les Probabilités avec cet exercice classique ! 🎧

Tu veux assurer tes bases en mathématiques ? Cet exercice est parfait pour toi ! À travers un scénario concret de DJ, tu vas :

  • Maîtriser le calcul de probabilités simples. 🎲
  • Apprendre à optimiser des répartitions grâce au PGCD. 📈
  • Développer ta logique de résolution de problèmes.

Un incontournable pour solidifier tes connaissances de Première Spécialité et ne plus faire d'erreurs sur les calculs de proportions. Prêt à mixer les maths ? C'est parti ! 🚀

📝 Sujet

📥 Télécharger

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Document PDF dnb_2015_12_ameriquesud_3_complet.pdf

Analyse de l'énoncé

Cet exercice, bien qu'issu d'un sujet de brevet (DNB 2015), mobilise des compétences fondamentales en probabilités et en arithmétique qui constituent le socle du programme de Première Spécialité Mathématiques. La problématique est double : d'une part, l'évaluation d'une probabilité simple dans un univers fini, et d'autre part, la recherche d'un diviseur commun maximal (PGCD) pour organiser une répartition équitable de données. En Première, ces notions sont essentielles pour aborder les variables aléatoires et la combinatoire.

Points de vigilance et notions requises

Pour réussir cet exercice, l'élève doit maîtriser les points suivants :

  • La définition d'une probabilité : Le rapport entre le nombre d'issues favorables et le nombre total d'issues possibles (équiprobabilité).
  • Le concept de partition : Comprendre que pour créer des groupes identiques, il faut que le nombre de groupes soit un diviseur commun des quantités de chaque catégorie.
  • L'algorithme d'Euclide ou la décomposition : Pour trouver le PGCD (Plus Grand Commun Diviseur) de 96 et 104.

Correction détaillée et guide de résolution

1. Calcul de la probabilité du premier titre :
Il y a au total $96 + 104 = 200$ titres de musique. Puisque le DJ choisit au hasard, chaque titre a la même probabilité d'être sélectionné. La probabilité d'obtenir un titre de rap est donnée par le quotient :
$P(Rap) = \frac{96}{200}$
En simplifiant la fraction (division par 8), on obtient :
$P(Rap) = \frac{12}{25} = 0,48$.
Il y a donc 48 % de chances que le premier morceau soit du rap.

2. Optimisation des concerts (mix) :
a) Le DJ veut répartir tous les titres en groupes identiques. Le nombre de concerts doit donc être un diviseur de 96 et de 104. Pour obtenir le nombre maximum de concerts, on cherche le PGCD(96, 104).
Utilisons l'algorithme d'Euclide :
$104 = 96 \times 1 + 8$
$96 = 8 \times 12 + 0$
Le dernier reste non nul est 8. Le DJ peut donc réaliser au maximum 8 concerts différents.
b) Composition de chaque concert :
Nombre de titres rap : $96 / 8 = 12$.
Nombre de titres électro : $104 / 8 = 13$.
Chaque concert sera composé de 25 titres (12 rap et 13 électro).

Pourquoi cet exercice en Première ?

Même si l'arithmétique pure est traitée en option Mathématiques Expertes, la logique de division et de structure de données est centrale en Algorithmie et Python (listes, boucles) pour la Première Spécialité. Savoir manipuler des fractions et comprendre l'équiprobabilité est le prérequis indispensable avant d'aborder les probabilités conditionnelles.