Vue fiche unique

dnb_Full_2015_Metropole_06_sujet.jpg

Sujet Brevet Maths 2015 - Metropole - Corrigé DNB & Analyse Détaillée

Préparez votre Brevet avec le sujet de 2015 ! 🚀 Ce classique du DNB Metropole couvre tout : du Tableur aux équations, en passant par la redoutable Trigonométrie des pentes. 📐 Testez vos connaissances en Statistiques, maniez le Théorème de Thalès et assurez-vous de maîtriser le calcul littéral. Téléchargez l'intégralité du sujet pour une révision efficace et ciblée. Ne laissez rien au hasard pour le jour J ! 💪

📝 Sujet

📥 Télécharger

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Document PDF dnb_Full_2015_Metropole_06_complet.pdf

Sujets similaires recommandés 🎯

3emeRecommandé

Sujet Brevet Maths 2017 - Wallis et Futuna - Corrigé & Analyse DNB

Thumbnail

Chapitres: Fonctions Arithmétique ...

3emeRecommandé

Sujet Brevet Maths 2018 - Amérique du Sud - Corrigé & Analyse DNB

Thumbnail

Chapitres: Calcul littéral Algorithmique-programmation ...

3emeRecommandé

Exercice Brevet 2020 - Nouvelle Calédonie - Ex 6 : Tableur, Statistiques et Probabilités

Thumbnail

Chapitres: Tableur Statistiques ...

3emeRecommandé

Sujet Brevet Maths 2024 - Polynésie - Corrigé & Analyse Détaillée

Thumbnail

Chapitres: Statistiques Calcul littéral ...

3emeRecommandé

Sujet Brevet Maths 2014 - Asie - Analyse et Correction DNB

Thumbnail

Chapitres: Fractions Calcul littéral ...

3emeRecommandé

Exercice Brevet 2024 - Polynésie - Ex 2 : Calculer Moyenne, Pourcentage et Interpréter les Statistiques

Thumbnail

Chapitres: Statistiques Pourcentages

3emeRecommandé

Sujet Brevet Maths 2024 - Amérique du Nord - Corrigé & Analyse DNB

Thumbnail

Chapitres: Vrai/Faux Calcul littéral ...

3emeRecommandé

Exercice Brevet 2014 - Polynésie - Ex 3 : Fonctions, Tableur et Résolution d'Équations

Thumbnail

Chapitres: Fonctions Tableur

3emeRecommandé

Exercice Brevet 2014 - Métropole - Ex 5 : Conjecture, Tableur et Calcul Littéral

Thumbnail

Chapitres: Calcul littéral Tableur ...

3emeRecommandé

Sujet Brevet Maths 2018 - Nlle Caledonie - Corrigé & Analyse DNB

Thumbnail

Chapitres: Arithmétique Calcul littéral ...

Présentation du sujet

Le sujet du Brevet des Collèges de Mathématiques de Métropole, session de juin 2015, est un excellent témoin de la richesse des programmes de Cycle 4. Composé de sept exercices distincts, il balaye les principales compétences attendues des élèves : du calcul mental et littéral à la géométrie appliquée, en passant par les statistiques et les probabilités. Ce sujet est réputé pour son approche équilibrée entre problèmes concrets (façade, distance d'arrêt) et questions fondamentales (équations, propriétés des puissances).

Analyse par exercice

  • Exercice 1 : Tableur et Statistiques (4 points)

    Cet exercice est un incontournable du Brevet. Il teste la maîtrise de l'outil Tableur, demandant d'identifier la formule correcte pour la somme (=SOMME(B2:B7)). Il s'enchaîne avec le calcul de la moyenne arithmétique et la détermination d'un pourcentage de contribution. Un démarrage classique qui permet de valider des compétences de base en Statistiques et Calcul numérique.

  • Exercice 2 : Programme de calculs et Calcul littéral (4,5 points)

    Ce problème met en scène un programme de calcul simple. L'objectif est double : vérifier numériquement les affirmations de trois élèves (Sophie, Martin, Gabriel) et prouver l'affirmation générale de Faïza en utilisant le Calcul littéral. Si on note $x$ le nombre de départ, la simplification de l'expression $3(x+8) - 24 - x$ doit mener à $2x$, confirmant ainsi l'intuition algébrique.

  • Exercice 3 : Géométrie plane, Thalès et Pythagore (4 points)

    La figure proposée est un cas d'école de triangles emboîtés. La première question nécessite l'application du Théorème de Pythagore dans le triangle rectangle KAD pour trouver la longueur KA. La seconde question, visant à calculer HP, requiert l'utilisation du Théorème de Thalès (ou des triangles semblables) en reconnaissant les droites parallèles (DK) et (HP) coupées par les sécantes (DA) et (KA). Un exercice essentiel pour valider la Géométrie plane.

  • Exercice 4 : Exercice Flash (7,5 points)

    Cet exercice est une série de cinq questions indépendantes, couvrant une grande variété de notions, forçant l'élève à passer rapidement d'un domaine à l'autre :

    • Image d'un nombre par une fonction affine ($f(3)$).
    • Calcul de Probabilités (évènement simple sur des choix vestimentaires).
    • Propriétés des Puissances (vérifier $2^{40} = 2 \times 2^{39}$, une question de Vrai/Faux sur l'Arithmétique).
    • Résolution d'une Équation du premier degré ($5x - 2 = 3x + 7$).
  • Exercice 5 : Aires et Fractions (6 points)

    Un problème concret de chantier. La première partie exige le calcul de l'aire de la façade à peindre (un trapèze rectangle ou la somme d'un rectangle et d'un triangle rectangle). Une fois l'aire trouvée (67,5 m²), il faut calculer le nombre de pots de peinture nécessaire (conversion en nombre entier supérieur) et le coût total. La deuxième partie teste la maîtrise des Fractions dans un contexte financier (calcul des mensualités après un premier versement).

  • Exercice 6 : Vitesses, Lecture graphique et Proportionnalité (6 points)

    Cet exercice est centré sur la sécurité routière. Après un calcul simple de distance d'arrêt, il introduit l'analyse de deux graphiques. La Lecture graphique est sollicitée pour déterminer une vitesse ou la distance d'arrêt totale à 90 km/h. La question clé porte sur la Proportionnalité de la distance de freinage par rapport à la vitesse (réponse : non, car la courbe n'est pas une droite passant par l'origine, elle est parabolique). Enfin, un calcul utilisant une formule quadratique sur route mouillée démontre l'impact de la météo.

  • Exercice 7 : Trigonométrie et Pente (4 points)

    Un excellent exercice d'application de la Trigonométrie. Le contexte de la pente à 10% définit un triangle rectangle où l'on connaît le côté opposé (10 m) et le côté adjacent (100 m) à l'angle recherché. L'utilisation de la fonction $\tan$ (ou $tan^{-1}$) est indispensable pour trouver l'angle au degré près. La seconde partie compare deux pentes, nécessitant de maîtriser la conversion entre ratio (1:5) et pourcentage (20%), confirmant une fois de plus les liens avec la Proportionnalité.

Conclusion

Le DNB 2015 de Métropole était un sujet complet et très représentatif des attentes du programme. Il demandait une bonne organisation, avec des exercices de difficulté progressive. Les points cruciaux de révision se situent clairement sur les applications géométriques (Thalès, Pythagore, Trigonométrie) et la capacité à jongler entre les différents outils mathématiques (Algèbre, Statistiques, Lecture graphique). La réussite passait par la justification rigoureuse des réponses, même pour les affirmations (Vrai/Faux). Maîtriser ce sujet assure une excellente préparation pour tout futur examen du Brevet.