Vue fiche unique

dnb_Full_2013_NlleCaledonie_12_sujet.jpg

Sujet Brevet Maths 2013 - Nouvelle-Calédonie - Analyse détaillée et Corrigé

Préparez-vous efficacement pour le DNB 2024 ! 🚀 Ce sujet de Nouvelle-Calédonie 2013 est un excellent entraînement, couvrant toutes les notions clés : Probabilités 🍕, Thalès 📐, Volumes 🛁, et Fonctions linéaires 📈. Maîtrisez la résolution d'équations et l'utilisation du tableur pour l'analyse de données. Un sujet diversifié qui teste toutes vos compétences. Téléchargez l'analyse et le corrigé pour booster vos notes en Mathématiques ! 💯

📝 Sujet

📥 Télécharger

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Document PDF dnb_Full_2013_NlleCaledonie_12_complet.pdf

Sujets similaires recommandés 🎯

3emeRecommandé

Exercice Brevet 2014 - Asie - Ex 6 : Budgets, Statistiques et Probabilités de Tombola

Thumbnail

Chapitres: Statistiques Probabilités

3emeRecommandé

Exercice Brevet 2014 - Nouvelle Calédonie - Ex 5 : Calcul de Moyennes et Analyse Statistique

Thumbnail

Chapitres: Statistiques

3emeRecommandé

Exercice Brevet 2022 - Centres étrangers - Ex 5 : PGCD et Volumes dans la confection de chocolats

Thumbnail

Chapitres: Arithmétique Volumes

3emeRecommandé

Sujet Brevet Maths 2017 - Metropole - Corrigé & Analyse DNB

Thumbnail

Chapitres: Algorithmique-programmation Probabilités ...

3emeRecommandé

Exercice Brevet 2024 - Centres étrangers - Ex 5 : Cône, Volumes, Pythagore et Réduction

Thumbnail

Chapitres: Pythagore Aires et périmètres ...

3emeRecommandé

Exercice Brevet 2020 - Métropole - Ex 4 : Fonctions, Tableur et Choix de Tarifs

Thumbnail

Chapitres: Tableur Fonctions

3emeRecommandé

Sujet Brevet Maths 2014 - Polynésie - Corrigé & Analyse

Thumbnail

Chapitres: Probabilités Thalès ...

3emeRecommandé

Sujet Brevet Maths 2014 - Polynésie - Analyse Complète et Correction

Thumbnail

Chapitres: Calcul numérique Pythagore ...

3emeRecommandé

Sujet Brevet Maths 2020 - Métropole (Septembre) - Analyse Complète & Corrigé

Thumbnail

Chapitres: Calcul littéral Pythagore ...

3emeRecommandé

Exercice Brevet 2014 - Métropole - Ex 7 : Volume, Proportionnalité et Théorème de Pythagore

Thumbnail

Chapitres: Volumes Proportionnalité ...

Présentation du sujet du Brevet 2013 (Nouvelle-Calédonie)

Ce sujet du Diplôme National du Brevet (DNB) de Nouvelle-Calédonie, session de décembre 2013, est un excellent exemple de l'examen de fin de collège. Il est caractérisé par une grande diversité de domaines mathématiques, mettant l'accent sur la résolution de problèmes concrets et l'application des théorèmes fondamentaux. Avec huit exercices indépendants, ce sujet évalue l'aisance des candidats sur des concepts allant de la géométrie dans l'espace à l'algèbre fonctionnelle, en passant par l'analyse de données et les probabilités.

Analyse par exercice

  • Exercice 1 : QCM (4 points)

    Ce questionnaire à choix multiples couvre des notions de base en Calcul numérique. Les questions portent sur les Vitesses (conversion d'unités), les Puissances (notation scientifique), la simplification de Fractions, et la manipulation des racines carrées. C'est un exercice rapide qui nécessite de la rigueur arithmétique.

  • Exercice 2 : Coquillages (3 points)

    Un problème classique de mise en Équations ou de résolution par tâtonnement intelligent. Il s'agit de déterminer deux quantités (nombre de grands et de petits coquillages) à partir de deux informations (nombre total et longueur totale). Il est idéal pour s'exercer à la modélisation algébrique, même s'il peut être résolu arithmétiquement.

  • Exercice 3 : Pizzeria FinBon (5 points)

    Cet exercice est divisé en deux parties principales. Les trois premières questions évaluent les Probabilités, notamment la probabilité simple et la probabilité conditionnelle (Q2). La troisième question invite à utiliser un arbre ou un tableau pour calculer la probabilité d'un événement composite. La dernière question fait appel à la Géométrie plane et au calcul d'Aires et périmètres (aires de disques) pour comparer les quantités de pizza, un piège fréquent pour les élèves.

  • Exercice 4 : Géométrie (4 points)

    Ce problème de géométrie fait appel au Théorème de Pythagore (implicitement, car le triangle ABC 3-4-5 est rectangle) et à la connaissance des propriétés des triangles (nature des figures). Le calcul de la longueur ED nécessite l'application correcte des formules géométriques dans un contexte de figure complexe.

  • Exercice 5 : Sécurité routière (4 points)

    Un cas d'application directe et très fréquent du Théorème de Thalès. En utilisant les triangles semblables formés par la ligne de visée du conducteur et les objets verticaux (AE et BD), il faut calculer des distances (DC, ED) et interpréter le résultat pour déterminer la zone d'ombre (zone non visible), un excellent exercice de Proportionnalité en situation.

  • Exercice 6 : Belles bulles (3,5 points)

    Cet exercice est centré sur la Géométrie dans l'espace et le calcul de Volumes. Il demande de calculer le volume d'un pavé droit, d'exprimer le volume d'une pyramide en fonction de sa hauteur ($h$), et de résoudre une Équation pour trouver la hauteur nécessaire pour que les deux solides aient le même volume. Il lie efficacement le calcul littéral et les formules spatiales.

  • Exercice 7 : Concours Australien (5,5 points)

    Clairement orienté Statistiques et Tableur. Les élèves doivent compléter le tableau (lecture d'informations et calculs simples de totaux), identifier le mode, les catégories, calculer une moyenne par établissement, et enfin, écrire la formule correcte dans une feuille de calcul (case G5), illustrant l'importance des outils numériques.

  • Exercice 8 : Jeu vidéo (7 points)

    L'exercice le plus lourd en Algèbre et Fonctions. Il modélise l'évolution de la force des personnages par des Fonctions affines (mage, chasseur) ou constante (guerrier). Il nécessite la complétion d'un tableau, la résolution d'une Équation simple pour trouver l'égalité des forces, l'association des expressions littérales ($f(x)$, $g(x)$, $h(x)$) aux personnages, le tracé des droites associées (Lecture graphique), et enfin l'interprétation du graphique pour répondre à une question d'inégalité.

Conclusion : Maîtriser les fondamentaux pour le DNB

Ce sujet de Nouvelle-Calédonie 2013 est très représentatif des attentes du Brevet en termes de diversité des compétences. La réussite passe par une maîtrise solide des outils algébriques (Fonctions et Équations), une bonne application des théorèmes de géométrie (Thalès, Pythagore, Volumes) et une capacité à manipuler les données (Statistiques et Probabilités). Les exercices 7 et 8 confirment également la nécessité de savoir utiliser les Tableurs et d'interpréter les graphiques, compétences essentielles en fin de collège.