Analyse de l'énoncé
Cet exercice, bien qu'issu d'un sujet de brevet, constitue une excellente base pour la spécialité mathématiques en classe de Première. Il mobilise des concepts fondamentaux de l'algorithmie : l'initialisation de variables, les boucles itératives (répéter) et la modification d'un état (incrémentation/décrémentation). Dans cet exercice, on utilise le logiciel Scratch pour tracer une série de triangles équilatéraux dont la taille diminue à chaque étape. Pour un élève de Première, cela doit être interprété comme l'étude d'une suite arithmétique de raison $r = -20$.
Points de vigilance et notions de cours
Pour réussir cet exercice, il faut maîtriser deux aspects :
- La lecture de script : Comprendre la différence entre le bloc principal et la définition d'une fonction (ici le bloc 'triangle').
- La gestion des variables : Suivre l'évolution de la variable 'côté' à travers chaque itération de la boucle.
- La géométrie de la tortue : Savoir que pour tracer un polygone régulier à $n$ côtés, l'angle de rotation est de $360/n$. Ici, pour un triangle ($n=3$), on tourne de $120^{\circ}$.
Correction détaillée
1. Coordonnées du point de départ : En lisant l'instruction n°3 (aller à x: -200 y: -100), on identifie immédiatement les coordonnées de départ : $(-200 ; -100)$.
2. Nombre de triangles : L'instruction n°6 indique 'répéter 5 fois'. Comme le bloc 'triangle' est appelé une fois par itération, le script dessine 5 triangles.
3. Étude de la variable côté :
a. Au premier passage, la variable 'côté' vaut 100. À la fin de la première itération (instruction n°9), on ajoute $-20$. Ainsi, pour le deuxième triangle, la longueur du côté est de $100 - 20 = 80$ pixels.
b. La figure obtenue consiste en 5 triangles équilatéraux posés sur une même ligne horizontale (car l'orientation est à 90° et on avance de 'côté' après chaque dessin), de tailles décroissantes (100, 80, 60, 40, 20).
4. Modification du script : La nouvelle figure montre une rotation entre chaque triangle. Pour obtenir cet effet 'en éventail' ou en escalier, il faut insérer l'instruction 'tourner de 60 degrés' à l'intérieur de la boucle principale. En la plaçant après l'instruction n°8 (avancer de côté), l'algorithme change d'orientation avant de modifier la variable et de recommencer le tracé.