Vue fiche unique

Brevet 2023 : Exercice Corrigé Programme de Calcul - Ex 3

Maîtrisez les programmes de calcul et le tableur pour le Brevet 2024 ! 🚀 Cet exercice classique de la session Asie 2023 décortique tout : du calcul littéral aux fonctions carrées. Un guide indispensable pour transformer vos révisions en réussite totale. Ne laisse pas les équations te piéger, clique pour découvrir la méthode détaillée ! 📝✨

📝 Sujet

Chargement...

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Sujets similaires recommandés 🎯

3emeRecommandé

Brevet 2023 Corrigé : QCM Arithmétique & Géométrie - Ex 1

Thumbnail

Chapitres: QCM Arithmétique ...

3emeRecommandé

Brevet 2014 Ex 7 : Fonctions et Tableur - Corrigé PDF

Thumbnail

Chapitres: Fonctions Tableur ...

3emeRecommandé

Brevet 2015 Ex 4 : Système d'Équations - Corrigé PDF

Thumbnail

Chapitres: Système d'équations Hors programme

3emeRecommandé

Brevet 2015 - Ex 1 : QCM Puissances et Pourcentages - PDF

Thumbnail

Chapitres: QCM Puissances ...

3emeRecommandé

Sujet Brevet Maths 2013 - Polynésie - Corrigé Détaillé & Analyse

Thumbnail

Chapitres: Arithmétique Volumes ...

3emeRecommandé

Exercice Corrigé Brevet Programme Calculs - PDF 2016 Ex 2

Thumbnail

Chapitres: Programme de calculs

3emeRecommandé

Sujet Brevet Maths 2016 - Amerique Sud - Corrigé & Analyse

Thumbnail

Chapitres: Arithmétique Thalès ...

3emeRecommandé

Exercice Corrigé Brevet Calcul Littéral 2026 - Ex 2

Thumbnail

Chapitres: Programme de calculs Calcul littéral

3emeRecommandé

Exercice Brevet Calcul Littéral 2024 - Ex 2 Amerique Nord

Thumbnail

Chapitres: Programme de calculs Calcul littéral ...

3emeRecommandé

Sujet Brevet Maths 2016 - Metropole - Corrigé & Analyse

Thumbnail

Chapitres: Géométrie plane Pythagore ...

Introduction aux notions clés du Brevet

Cet exercice, issu de la session 2023 du Brevet des Collèges (zone Asie), est un modèle d'interdisciplinarité mathématique. Il balaye un spectre large du programme de troisième : le calcul littéral, l'étude de fonctions, l'utilisation d'un tableur et la résolution d'équations. L'objectif est de transformer un programme de calcul narratif en une expression algébrique rigoureuse, puis d'exploiter différents outils (graphiques et numériques) pour trouver des antécédents.

Analyse de la Partie A : La modélisation algébrique

La première étape consiste à tester le programme avec des valeurs numériques pour en comprendre la structure. Pour la question 1, avec le nombre 3, nous suivons les étapes : $3^2 = 9$ ; $9 \times 5 = 45$ ; $45 + 4 = 49$ ; $49 \times 2 = 98$ ; $98 - 8 = 90$. Cette vérification est cruciale pour valider votre compréhension de l'énoncé.

Dans la question 2, on aborde la notion de carré d'un nombre. En choisissant 2 et -2, l'élève doit réaliser que $(2)^2 = 4$ et $(-2)^2 = 4$. Puisque le reste du programme s'applique de la même manière à ce carré, le résultat final sera identique. C'est une excellente introduction à la notion de parité d'une fonction.

La question 3 est le pivot de l'exercice : la généralisation. En posant $x$ comme variable de départ, on traduit le programme :
1. Carré : $x^2$
2. Multiplier par 5 : $5x^2$
3. Ajouter 4 : $5x^2 + 4$
4. Multiplier par 2 : $2(5x^2 + 4) = 10x^2 + 8$
5. Enlever 8 : $10x^2 + 8 - 8 = 10x^2$.
La démonstration est ainsi faite : le programme revient à multiplier le carré du nombre de départ par 10.

Analyse de la Partie B : Graphique, Tableur et Exactitude

La question 4 demande une lecture graphique. Pour trouver les antécédents de 30 par la fonction $f(x) = 10x^2$, on trace une droite horizontale à l'ordonnée $y=30$. On cherche les points d'intersection avec la courbe $\mathcal{C}_f$ et on lit leurs abscisses. On peut estimer $x \approx 1,7$ et $x \approx -1,7$. Attention, la lecture graphique reste toujours une approximation.

La question 5 nous amène vers le tableur. Un outil indispensable du Brevet. Pour calculer le résultat en cellule B2 à partir de la valeur en A2, la formule est =10*A2^2 ou =10*A2*A2. En observant le tableau, on cherche la valeur dans la colonne B la plus proche de 30. C'est 29,929 qui correspond au nombre de départ 1,73. C'est une méthode de balayage par encadrement.

Enfin, la question 6 exige la valeur exacte. Cela signifie qu'il faut résoudre l'équation $10x^2 = 30$. En divisant par 10, on obtient $x^2 = 3$. Puisque l'on cherche un nombre positif, la solution unique est $x = \sqrt{3}$. L'élève doit savoir passer d'une valeur approchée (1,73) à la valeur radicale exacte.

Les pièges à éviter lors de l'examen

Le piège classique réside dans le développement de l'étape 4 : $2(5x^2 + 4)$. Beaucoup d'élèves oublient de distribuer le 2 au chiffre 4, ce qui fausse la simplification finale. Un autre point de vigilance concerne la question sur le nombre -2 : n'oubliez jamais les parenthèses autour d'un nombre négatif lorsqu'il est élevé au carré. Enfin, pour le tableur, commencez toujours votre formule par le signe =, sinon elle ne sera pas comptabilisée.

Conseils de rédaction pour maximiser vos points

Pour la démonstration littérale, présentez chaque étape clairement avec des flèches ou des égalités successives. Pour la lecture graphique, même si elle n'est pas justifiée ici, il est recommandé de laisser les pointillés de lecture sur votre copie pour montrer au correcteur votre méthode. Pour la valeur exacte, n'oubliez pas de préciser que vous ne retenez que la solution positive car l'énoncé le demande, même si l'équation $x^2=3$ possède normalement deux solutions ($ \sqrt{3} $ et $ -\sqrt{3} $).