Introduction aux notions de l'exercice
Cet exercice du Brevet des collèges 2017 (Pondichéry) est un modèle d'interdisciplinarité. Il mêle des notions de proportionnalité, de statistiques et de fonctions à travers une thématique concrète : la santé et le sport. Bien que les probabilités ne soient pas directement calculées ici, la gestion de données fréquentielle prépare à leur compréhension. Nous allons explorer comment modéliser la Fréquence Cardiaque Maximale Conseillée (FCMC) à l'aide de fonctions affines et de puissances, tout en manipulant un tableur numérique.
Analyse Méthodique de l'Exercice
1. Conversion et Proportionnalité
La première question demande de passer d'un échantillon temporel (15 secondes) à une fréquence par minute. C'est un exercice classique de proportionnalité. Puisqu'il y a 60 secondes dans une minute, le facteur de conversion est 4 ($60 / 15 = 4$). Si Denis compte 18 pulsations en 15 secondes, il suffit de multiplier par 4 : $18 \times 4 = 72$ pulsations par minute (bpm). Cette étape est cruciale pour valider la compréhension des unités de temps.
2. Fréquence et Intervalle de temps
La question 2 introduit la notion d'inverse. Si l'intervalle entre deux pulsations est de $0,8$ seconde, on cherche combien de fois cet intervalle rentre dans 60 secondes. Le calcul est $\frac{60}{0,8}$. Astuce de calcul : $\frac{600}{8} = 75$. La fréquence affichée sera donc de 75 bpm. C'est une application directe de la relation $f = \frac{1}{T}$ adaptée aux minutes.
3. Analyse de données statistiques
Denis analyse sa séance. L'étendue est la différence entre la valeur maximale et la valeur minimale : $182 - 65 = 117$. Cela montre une forte amplitude d'effort. Pour la durée de l'entraînement, on utilise la moyenne. Si la fréquence moyenne est de 130 pulsations/minute et qu'il y a eu 3640 pulsations au total, le temps $t$ se calcule par : $t = \frac{3640}{130} = 28$ minutes. Cette question vérifie ta capacité à manipuler les formules de moyenne arithmétique de façon inverse.
4. Modélisation par des Fonctions
L'exercice introduit ensuite la fonction affine $f(a) = 220 - a$. Pour Denis, âgé de 32 ans, $f(32) = 220 - 32 = 188$ bpm. En comparant avec un jeune de 15 ans ($f(15) = 205$), on observe que la FCMC diminue avec l'âge. C'est une fonction décroissante. Il est essentiel de savoir interpréter le coefficient directeur (ici $-1$) dans un contexte réel.
5. Utilisation du Tableur et Formules
Enfin, on utilise la formule de Gellish : $g(a) = 191,5 - 0,007 \times a^2$. C'est une fonction non linéaire. Dans un tableur, pour calculer $g(a)$ en cellule C2 à partir de l'âge situé en A2, la syntaxe est précise. Il faut utiliser l'astérisque pour la multiplication et l'accent circonflexe ou la multiplication par soi-même pour le carré. La formule attendue est : =191,5-0,007*A2^2 ou =191,5-0,007*A2*A2. Cette compétence est de plus en plus évaluée au Brevet.
Les Pièges à Éviter
Attention aux unités ! La confusion entre secondes et minutes est la source d'erreur principale dans cet exercice. Dans la question 2, n'oublie pas que la fréquence est demandée *par minute*. Un autre piège concerne le tableur : ne jamais oublier le signe = au début de la formule, sinon le logiciel considère cela comme du texte et n'effectue aucun calcul.
Conseils de Rédaction
Pour obtenir le maximum de points :
1. Justifie chaque calcul par une phrase courte (ex: "L'étendue est la différence entre le maximum et le minimum").
2. Précise toujours les unités (pulsations/minute, minutes, ans).
3. Pour la question sur le tableur, recopie fidèlement les coordonnées des cellules. Une réponse claire et structurée montre au correcteur que tu maîtrises non seulement le calcul, mais aussi le raisonnement logique.