Vue fiche unique

✨ 100% GRATUIT & CORRIGÉ

L'Ultime Banque de Sujets BAC première 2026

Accède aux sujets officiels et corrections détaillées. Ton 20/20 commence ici. 🚀

premierespe_2020_50_1_sujet.jpg

Exercice Première Spécialité - 2020 - Ex 1 : QCM Multi-Thèmes

Révise les fondamentaux du programme avec cet exercice complet de Première Spécialité ! 🚀 Ce QCM est l'outil idéal pour tester tes connaissances sur cinq thèmes majeurs : l'exponentielle, la dérivation, la géométrie repérée, la trigonométrie et le second degré. En moins de 15 minutes, identifie tes points forts et tes lacunes grâce à notre correction détaillée. C'est le format parfait pour booster ta confiance avant un contrôle ou pour préparer tes révisions de fin d'année. Prêt à relever le défi ? 💪📈

📝 Sujet

Chargement...

✅ Correction

🫣

Correction Masquée

Avez-vous bien cherché l'exercice ?

Sujets similaires recommandés 🎯

premierespeRecommandé

Sujet Première Spécialité Mathématiques - Sujet 7 2020 - Corrigé & Analyse

Thumbnail

Chapitres: Algorithmie Dérivation ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 4 : Dérivation et Exponentielle

Thumbnail

Chapitres: Dérivation Exponentielle

premierespeRecommandé

Sujet Première Spécialité Mathématiques - Sujet 56 2020 - Corrigé & Analyse

Thumbnail

Chapitres: QCM Second degré ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 1 : QCM Multi-thèmes

Thumbnail

Chapitres: Second degré Produit scalaire ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 1 : QCM Multi-thèmes

Thumbnail

Chapitres: Variables aléatoires Géométrie repérée ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 1 : QCM Trigonométrie, Produit scalaire et Suites

Thumbnail

Chapitres: Trigonométrie Produit scalaire ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 1 : QCM Multi-thèmes

Thumbnail

Chapitres: Dérivation Second degré ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 4 : Exponentielle et Dérivation

Thumbnail

Chapitres: Dérivation Exponentielle

premierespeRecommandé

Sujet Première Spécialité Mathématiques - Sujet 1 2020 - Corrigé & Analyse

Thumbnail

Chapitres: QCM Produit scalaire ...

premierespeRecommandé

Exercice Première Spécialité - 2020 - Ex 1 : QCM Analyse et Géométrie

Thumbnail

Chapitres: QCM Exponentielle ...

Analyse de l'énoncé

Cet exercice se présente sous la forme d'un QCM (Questionnaire à Choix Multiples) composé de cinq questions indépendantes. Ce format est classique dans les épreuves de Première Spécialité car il permet de balayer un large spectre du programme en un temps réduit. Les thèmes abordés ici sont fondamentaux : les propriétés de la fonction exponentielle, l'équation de la tangente (dérivation), la géométrie analytique (équation cartésienne de droite), les propriétés de la fonction cosinus (trigonométrie) et l'étude du signe/racines d'un trinôme (second degré).

Points de vigilance et notions de cours

  • Exponentielle : Il faut parfaitement maîtriser les relations algébriques, notamment e^a * e^b = e^(a+b).
  • Dérivation : La formule de l'équation de la tangente en un point d'abscisse a est $y = f'(a)(x - a) + f(a)$.
  • Géométrie : Un vecteur directeur $\vec{u}(-b, a)$ est associé à une équation de la forme $ax + by + c = 0$.
  • Trigonométrie : La parité ($\\cos(-x) = \\cos(x)$) et la périodicité ($2\pi$) sont essentielles.
  • Second degré : Le nombre de points d'intersection avec l'axe des abscisses dépend directement du signe du discriminant $\Delta$.

Correction détaillée

Question 1 : En appliquant la règle $e^a \times e^b = e^{a+b}$, on obtient $e^x \times e^{x+2} = e^{x + x + 2} = e^{2x+2}$. La réponse correcte est la a.

Question 2 : Par définition du cours, l'équation de la tangente à $g$ en $a=1$ est $y = g'(1)(x - 1) + g(1)$. Cela correspond exactement à la réponse b.

Question 3 : Le vecteur directeur est $\vec{u}(4, 7)$, donc $b = -4$ et $a = 7$. L'équation est de la forme $7x - 4y + c = 0$ (ou $-7x + 4y + c' = 0$). En testant le point $A(-2, 3)$ dans l'expression $-7x + 4y - 26$ : $-7(-2) + 4(3) - 26 = 14 + 12 - 26 = 0$. La condition est vérifiée. La réponse correcte est la a.

Question 4 : On sait que $\cos(t + 4\pi) = \cos(t)$ car la fonction cosinus est $2\pi$-périodique. On sait aussi que $\cos(-t) = \cos(t)$ (fonction paire). Ainsi, l'expression vaut $\cos(t) + \cos(t) = 2\cos(t)$. Comme $\cos(t) = 2/3$, le résultat est $2 \times (2/3) = 4/3$. La réponse correcte est la c.

Question 5 : Pour trouver les intersections avec l'axe des abscisses, on résout $-x^2 + 6x - 9 = 0$. Calculons le discriminant : $\Delta = b^2 - 4ac = 6^2 - 4(-1)(-9) = 36 - 36 = 0$. Puisque $\Delta = 0$, l'équation admet une unique solution réelle. Il y a donc un seul point d'intersection. La réponse correcte est la b.