Exercice Premiere Spécialité - 2020 - Ex 4 :

X . Dérivation et Optimisation
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1.
f(x) = 8z — 2a3.

a. f estune fonction polyndme dérivable sur R, donc sur [0; 2] et sur cet intervalle :
f'(z) = 8 — 62 = 2(4 — 32?).

Comme 2 > 0, le signe de f(z) est celui de 4 — 3z2.
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b. 4 — 322 est un trindbme dont les racines sont —— et —.
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Comme le coefficient a« = —3 > 0, on sait que la fonction est croissante sauf sur l'intervalle
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f adonc un maximum local en x = ———, tel que :
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faun minimum local en z = tel que :
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Comme on étudie la fonction f sur l'intervalle [0; 2], on a donc :
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f est croissante sur {0; —] puis décroissante sur [—; 2}.
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a. Pourz = 1Tlaireestégalea2x(4—1) =6etpourx = 1,5 aire est égale a 3x (4—2,25) = 5,25.
Laire n’est donc pas constante.

b. Ona M(x; z?), S(—z; 2?), E(x; 4) et F(—x; 4).
Sixzel0;2],alors SM =2z et ME = 4 — 22
Donc l'aire du rectangle MSFE, A(MSFE), est égale a :

AMSFE) =2x x (4 —2%) = 8z — 22° = f(x).

c. Onavuque surlintervalle |0; 2[, f a un maximum égal a :
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