
Exercice BAC 2025 Centres Étrangers -
Ex 3

Fonction logarithme Étude de fonction Suites numériques

Raisonnement par récurrence Algorithmique Python

Théorème des valeurs intermédiaires

Partie A

On considère la fonction f définie sur l’intervalle ]− 1 ; +∞[ par

f(x) = 4 ln(x+ 1)− x2

25
On admet que la fonction f est dérivable sur l’intervalle ]− 1 ; +∞[.

1. Déterminer la limite de la fonction f en −1.

2. Montrer que, pour tout x appartenant à l’intervalle ]− 1 ; +∞[ , on a :

f ′(x) =
100− 2x− 2x2

25(x+ 1)

3. Étudier les variations de la fonction f sur l’intervalle ]− 1 ; +∞[ puis en déduire que la fonction f est
strictement croissante sur l’intervalle [2 ; 6,5].

4. On considère h la fonction définie sur l’intervalle [2 ; 6,5] par h(x) = f(x)− x.

On donne ci-dessous le tableau de variations de la fonction h :

x 2 m ≈ 2, 364 6, 5

h(x)

h(2)

M ≈ 2, 265

h(6, 5)

Montrer que léquation h(x) = 0 admet une unique solution α ∈ [2 ; 6, 5].

5. On considère le script suivant, écrit en langage Python:

from math import *

def f(x):
return 4*log(1+x)-(x**2)/25

def bornes(n):
p = 1/10**n
x = 6
while f(x)-x > 0:

x = x + p
return (x-p, x)

On rappelle qu’en langage Python:

• la commande log(x) renvoie la valeur lnx ;
• la commande c∗∗d renvoie la valeur de cd.

(a) Donner les valeurs renvoyées par la commande bornes(2).
On donnera les valeurs arrondies au centième.

(b) Interpréter ces valeurs dans le contexte de l’exercice.
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Partie B

Dans cette partie, on pourra utiliser les résultats obtenus dans la partie A.
On considère la suite (un) définie par u0 = 2, et, pour tout entier naturel n, un+1 = f (un)

1. Montrer par récurrence que pour tout n entier naturel,

2 6 un 6 un+1 < 6, 5.

2. En déduire que la suite (un) converge vers une limite `.

3. On rappelle que le réel α, défini dans la partie A, est la solution de l’équation h(x) = 0 sur l’intervalle
[2 ; 6,5].

Justifier que ` = α.
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