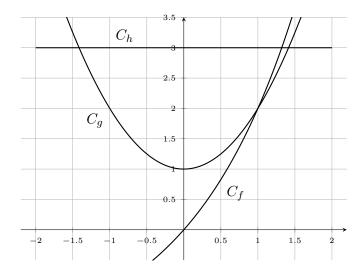


Exercice 1

Soit f la fonction définie sur [-3; 3] par $f(x) = x^2 + x - 2$.


a. Utiliser le mode graphique de votre calculatrice pour observer la courbe représentative associée à f.

(fenêtre : $-3 \leq X \leq 3$ pas 1, $-3 \leq Y \leq 11$, pas 1)

b. Faire alors une hypothèse sur le sens de variation de la fonction f sur l'intervalle [-3; 3].

Exercice 2

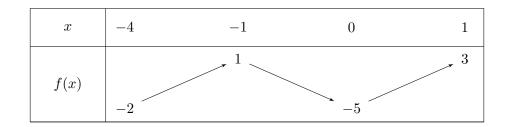
Les fonctions f, g et h sont définies sur [-2; 2].

Résoudre graphiquement :

a.
$$f(x) = g(x)$$

b.
$$f(x) = h(x)$$

c.
$$h(x) = g(x)$$


$$d. \ f(x) \le g(x)$$

e.
$$h(x) \leq g(x)$$

f.
$$h(x) > f(x)$$

Exercice 3

Voici le tableau de variations d'une fonction f:

a. Quel est l'ensemble de définition de f?

Comparer si possible en justifiant :

a) f(-2) et f(-3)

b) f(-1) et f(0)

c) f(0) et f(-3)

Exercice 4

En utilisant le tableau de variation de la question 3.

- a. Donner le maximum de f sur l'intervalle [-4; -1].
- b. Donner le minimum de f sur l'intervalle [-4; 0].
- c. Donner le maximum et le minimum de f sur l'intervalle [-4; 1].

Exercice 5

Un club sportif fait fabriquer des tee-shirts au nom du club. Chaque tee-shirt est facturé 4€ mais ils sont facturés 3,5€ l'un si la commande est d'au moins 100 unités du produit.

Compléter l'algorithme suivant où $\tt n$ est la variable égale au nombre de tee-shirts commandés et $\tt p$ le prix payé par le club :

```
def prix(n) :
if ......
    p = n * 4
else :
    p = .....
return p
```