

EXERCICE 1

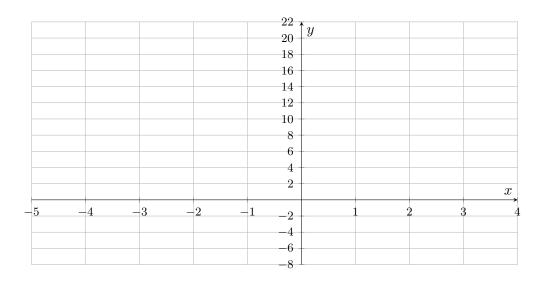
On considère la fonction f et sa représentation graphique \mathcal{C}_f dans un repère orthonormé. Dans tout cet exercice, les réponses se feront par **lectures graphiques**, on indiquera, **en bleu**, sur le graphique les traits nécessaires aux lectures.

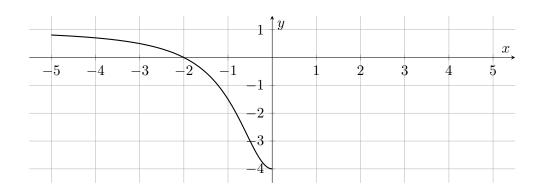
- 1. Indiquer l'ensemble de définition de la fonction f.
- 2. Déterminer :
 - (a) L'image de 3 puis l'image de (-2).
 - (b) Les éventuels antécédents de 0.
 - (c) Les éventuels antécédents de 2.
- 3. Déterminer le maximum et le minimum de f sur son ensemble de définition, s'ils existent.
- 4. Indiquer l'intervalle image de la fonction f.
- 5. Dresser le tableau de variations de la fonction f.

EXERCICE 2

On considère les fonctions f et h définies sur l'ensemble des réels et leurs représentations graphiques \mathcal{C}_f et \mathcal{C}_h par :

$$f(x) = 2x^2 + x - 6$$
 et $h(x) = \frac{x^2 - 4}{1 + x^2}$


- 1. Calculer l'image de $(5-\sqrt{2})$ par la fonction f, en détaillant les calculs.
- 2. Calculer l'image de $\frac{-2}{3}$ par la fonction h, en détaillant les calculs.
- 3. Montrer que, pour tout x réel, $f(x)=2\left(x+\frac{1}{4}\right)^2-\frac{49}{8}.$
- 4. En remarquant que, pour tout x réel, $2\left(x+\frac{1}{4}\right)^2-\frac{49}{8}=2\left[\left(x+\frac{1}{4}\right)^2-\frac{49}{16}\right]$, factoriser l'expression de f(x).

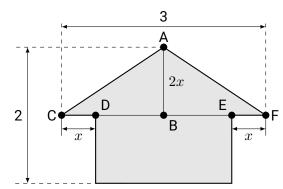

- 5. Déterminer par le calcul, les éventuels antécédents de 0.
- 6. Déterminer par le calcul, les éventuels antécédents de $-\frac{49}{8}$.
- 7. Montrer que, pour tout x réel, $f(x) \ge -\frac{49}{8}$.
- 8. En déduire l'existence d'un extremum pour la fonction f, dont on précisera la valeur.
- 9. À l'aide de la calculatrice, établir un tableau de valeurs pour la fonction f pour x compris entre -4 et 3 avec un pas de 0,5. On complétera le tableau ci-dessous :

x	-4	-3, 5	-3	-2, 5	-2	-1, 5	-1	-0, 5	0	0,5	1	1,5	2	2,5	3
f(x)															

10. Tracer la courbe représentative de la fonction f sur l'intervalle [-4; 3] dans le repère ci-dessous.

- 11. Étudier la parité de la fonction h.
- 12. On a tracé une restriction de la courbe C_h sur l'intervalle [-5; 0]. Compléter sur le graphique ci-dessous la courbe afin d'obtenir C_h sur l'intervalle [-5; 5] en justifiant votre tracé.

EXERCICE 3

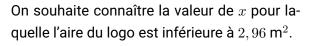

Une société sponsorise un salon immobilier et souhaite apposer son logo de 3 mètres sur 2 mètres, sur les murs où se déroule l'évènement.

Ci-contre le logo.

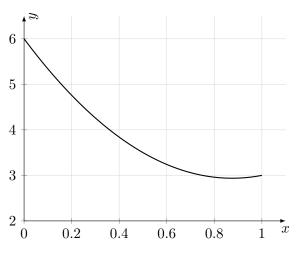
On pose:

• AB = 2x;

• CD = EF = x.


1. On nomme f(x) l'aire du logo, la fonction f étant définie sur $[0\,;\,1]$. Démontrer que : $f(x)=4x^2-7x+6$.

2. À l'aide de la calculatrice, compléter le tableau de valeurs suivant (arrondir au centième) :


x	0	0,3	0, 4	0, 5	0,6	0,7	0,8	1
f(x)								

3. On donne, ci-contre, la courbe de la fonction f: On souhaite connaître la valeur de x pour laquelle l'aire du logo est égale à $3,8 \text{ m}^2$.

- À l'aide du graphique ci-contre, donner une valeur approximative de x.
- Puis à l'aide de la calculatrice donner une valeur approchée de x au millième près.

• En utilisant la calculatrice, résoudre l'inéquation f(x) < 2,96 avec une précision de 0,01.

