

Exercice 1: Inéquations linéaires

a)
$$-3 - 4x > 5$$

 $-4x > 5 + 3$
 $-4x > 8$

On divise par -4 (négatif), on change le sens : $x<\frac{8}{-4}\iff x<-2$

Solution :
$$S =]-\infty; -2[$$

c)
$$9 - 2x > \frac{4}{3}$$

 $-2x > \frac{4}{3} - 9$
 $-2x > \frac{4}{3} - \frac{27}{3}$
 $-2x > -\frac{23}{3}$
 $x < \frac{-23/3}{-2} \iff x < \frac{23}{6}$
Solution: $S = \left] -\infty; \frac{23}{6} \right[$

e)
$$\frac{x-3}{4} < \frac{2-7x}{3}$$

On met au même dénominateur (12) ou on fait le produit en croix (car 3 et 4 positifs):

$$3(x-3) < 4(2-7x)$$

 $3x-9 < 8-28x$
 $3x+28x < 8+9$
 $31x < 17 \iff x < \frac{17}{31}$
Solution: $S = \left[-\infty; \frac{17}{31}\right]$

b)
$$3 - 6x \ge 5 - 4x$$

 $-6x + 4x \ge 5 - 3$
 $-2x \ge 2$

On divise par -2 (négatif), on change le sens :

$$x \leqslant \frac{2}{-2} \iff x \leqslant -1$$

Solution :
$$S =]-\infty;-1]$$

d)
$$5 + 2(x - 3) > -3x + 4$$

 $5 + 2x - 6 > -3x + 4$
 $2x - 1 > -3x + 4$
 $2x + 3x > 4 + 1$
 $5x > 5 \iff x > 1$
Solution : $S =]1; +\infty[$

Exercice 2 : Étude de signes

1.
$$(x-2)(3+2x) \le 0$$

Racines: $x-2=0 \iff x=2 \text{ et } 3+2x=0 \iff x=-1,5.$

x	$-\infty$		-1,5		2		$+\infty$
x-2		_		_	0	+	
3+2x		_	0	+		+	
Produit		+	0	_	0	+	

On cherche ≤ 0 (le signe -).

Solution : $S = [-1,5\,;\,2]$

2. $(4-x)(2+3x) \ge 0$

Racines : $4 - x = 0 \iff x = 4 \text{ et } 2 + 3x = 0 \iff x = -2/3.$

x	$-\infty$		-2/3		4		$+\infty$
4-x		+		+	0	_	
2+3x		_	0	+		+	
Produit		_	0	+	0	_	

On cherche $\geqslant 0$ (le signe +).

Solution: $S = \left[-\frac{2}{3}; 4 \right]$

 $3. \ \frac{(1-x)(2x+3)}{2x+1} \geqslant 0$ Valeur interdite : $2x+1=0 \iff x=-0,5.$

Racines: $1 - x = 0 \iff x = 1 \text{ et } 2x + 3 = 0 \iff x = -1, 5.$

x	$-\infty$		-1,5		-0,5		1		$+\infty$
1-x		+		+		+	0	_	
2x+3		_	0	+		+		+	
2x+1		_		_	0	+		+	
Quotient		+	0	_		+	0	_	

On cherche $\geqslant 0$.

Solution : $S =]-\infty\,;\,-1,\!5]\cup]-0,\!5\,;\,1]$

Valeur interdite: $3 + 5x = 0 \iff x = -0, 6$.

Racine: $2x - 5 = 0 \iff x = 2, 5$.

x	$-\infty$		-0,6		2,5		$+\infty$
2x-5		_		_	0	+	
3+5x		_	0	+		+	
Quotient		+		_	0	+	

Solution : $S =]-0.6\,;\,2.5]$

Exercice 3: Valeur absolue

1.
$$|x - 15| > 7$$

Cela signifie que la distance entre x et 15 est strictement supérieure à 7.

$$x-15 > 7 \iff x > 22$$
 ou $x-15 < -7 \iff x < 8$

Solution :
$$S =]-\infty\,;\,8[\cup]22\,;\,+\infty[$$

2.
$$|x+4| \leq 2$$

 $|x-(-4)| \leqslant 2$. La distance entre x et -4 est inférieure ou égale à 2.

$$-2 \leqslant x + 4 \leqslant 2$$

$$-2 - 4 \leqslant x \leqslant 2 - 4$$

$$-6 \leqslant x \leqslant -2$$

Solution : $S = [-6\,;\,-2]$

3.
$$|2x - 6| < 4$$

On factorise par 2 dans la valeur absolue : $|2(x-3)| < 4 \iff 2|x-3| < 4$.

En divisant par 2 : |x-3| < 2.

La distance entre \boldsymbol{x} et 3 est strictement inférieure à 2.

$$3 - 2 < x < 3 + 2$$

Solution : $S =]1\,;\,5[$

Exercice 4 : Factorisation et inéquations

1. $(-2x+4)^2 \ge (-2x+4)(x-1)$

On passe tout à gauche :

$$(-2x+4)^2 - (-2x+4)(x-1) \ge 0$$

On factorise par (-2x+4):

$$(-2x+4)[(-2x+4)-(x-1)] \ge 0$$
$$(-2x+4)[-2x+4-x+1] \ge 0$$
$$(-2x+4)(-3x+5) \ge 0$$

Racines: $-2x + 4 = 0 \implies x = 2$ et $-3x + 5 = 0 \implies x = 5/3$.

Tableau de signes :

x	$-\infty$		5/3		2		$+\infty$
-2x + 4		+		+	0	_	
-3x + 5		+	0	_		_	
Produit		+	0	_	0	+	

Solution : $S = \left[\frac{5}{3}; 2\right]$

2.
$$(3x-7)^2 < (5x-9)^2$$

Inéquation de la forme $A^2 < B^2 \iff A^2 - B^2 < 0$.

$$(3x - 7)^2 - (5x - 9)^2 < 0$$

On factorise avec $a^2-b^2=(a-b)(a+b)$:

$$[(3x-7) - (5x-9)][(3x-7) + (5x-9)] < 0$$
$$[3x-7-5x+9][3x-7+5x-9] < 0$$
$$(-2x+2)(8x-16) < 0$$

On peut simplifier par 2 et 8 pour alléger : $-2(x-1) \times 8(x-2) < 0 \iff -16(x-1)(x-2) < 0$. Diviser par -16 change le sens : (x-1)(x-2) > 0.

Un polynôme du second degré est du signe de a (ici positif) à l'extérieur des racines. **Solution :**

$$S =]-\infty$$
; $1[\cup]2$; $+\infty[$

Exercice 5 : Démonstration et déduction

1. Montrer l'égalité:

Développons le membre de gauche A = (-2x + 1)(x - 3) + 25:

$$A = (-2x^2 + 6x + x - 3) + 25 = -2x^2 + 7x + 22$$

Développons le membre de droite B = (-2x + 11)(x + 2) :

$$B = -2x^2 - 4x + 11x + 22 = -2x^2 + 7x + 22$$

On a bien A = B. L'égalité est vraie pour tout réel x.

2. Résoudre l'inéquation :

$$(-2x+1)(x-3) \geqslant -25$$

$$(-2x+1)(x-3)+25 \ge 0$$

D'après la question précédente, cela revient à résoudre :

$$(-2x+11)(x+2) \ge 0$$

Racines : x = 5, 5 et x = -2.

Le coefficient devant x^2 serait -2 (négatif), donc le polynôme est positif **entre** les racines. **Solution :** S = [-2; 5,5]

Exercice 6 : Problème d'aire

1. Expression de l'aire :

Aire du grand carré $ABCD = 5 \times 5 = 25$.

Aire du carré blanc $AEMF = x \times x = x^2$.

L'aire grisée est la différence : $\mathcal{A}(x) = 25 - x^2$.

2. Comparaison avec x + 5:

(a) On veut résoudre A(x) > x + 5.

$$25 - x^2 > x + 5$$
$$(25 - x^2) - (x + 5) > 0$$

On reconnaît l'identité remarquable $25 - x^2 = 5^2 - x^2 = (5 - x)(5 + x)$.

$$(5-x)(5+x) - (x+5) > 0$$

C'est bien l'inéquation demandée.

(b) **Résolution :** On factorise par le terme commun (x + 5) :

$$(x+5)[(5-x)-1] > 0$$
$$(x+5)(4-x) > 0$$

Faisons un tableau de signes rapide sur \mathbb{R} . Racines : -5 et 4.

x	$-\infty$		-5		4		$+\infty$
x + 5		_	0	+		+	
4-x		+		+	0	_	
Produit		_	0	+	0	_	

Sur \mathbb{R} , le produit est strictement positif sur]-5; 4[.

Or, l'énoncé précise que x est une longueur géométrique et $x \in]0; 5[$.

On cherche l'intersection de l'intervalle solution mathématique]-5; 4[avec l'intervalle de définition]0; 5[.

$$S =]-5; 4[\cap]0; 5[=]0; 4[$$

Conclusion : L'aire grisée est supérieure à x+5 pour tout x compris strictement entre 0 et 4.

Exercice 7: Le coin du chercheur

$$\frac{1}{x+2} - 1 \leqslant \frac{4}{4 - x^2}$$

- 1. Valeurs interdites: $x+2 \neq 0 \iff x \neq -2 \text{ et } 4-x^2 \neq 0 \iff x^2 \neq 4 \iff x \neq 2 \text{ et } x \neq -2.$ L'ensemble de définition est $\mathbb{R} \setminus \{-2; 2\}$.
- 2. **Transformation :** Remarquons que $4 x^2 = (2 x)(2 + x)$. Passons tout à gauche :

$$\frac{1}{x+2} - 1 - \frac{4}{(2-x)(2+x)} \le 0$$

Mise au même dénominateur (2-x)(2+x). Attention, x+2=2+x. Le 1er terme doit être multiplié par (2-x). Le terme -1 doit être multiplié par $(2-x)(2+x)=4-x^2$.

$$\frac{1(2-x)-1(4-x^2)-4}{(2-x)(2+x)} \le 0$$
$$\frac{2-x-4+x^2-4}{(2-x)(2+x)} \le 0$$
$$\frac{x^2-x-6}{(2-x)(2+x)} \le 0$$

3. Factorisation du numérateur $N(x)=x^2-x-6$:

On cherche les racines (discriminant ou racine évidente).
$$\Delta = (-1)^2 - 4(1)(-6) = 1 + 24 = 25$$
. $x_1 = \frac{1-5}{2} = -2$ et $x_2 = \frac{1+5}{2} = 3$. Donc $x^2 - x - 6 = (x+2)(x-3)$.

4. Simplification: L'inéquation devient:

$$\frac{(x+2)(x-3)}{(2-x)(2+x)} \le 0$$

On peut simplifier par (x+2) car $x \neq -2$.

$$\frac{x-3}{2-x} \leqslant 0$$

5. Tableau de signes:

x	$-\infty$		2		3		$+\infty$
x-3		_		_	0	+	
2-x		+	0	_		_	
Quotient		_		+	0	_	

On cherche ≤ 0 . Les solutions sont $]-\infty$; $2[\cup[3;+\infty[$.

Attention, il faut exclure la valeur interdite -2 qui est dans le premier intervalle.

Solution finale : $S =]-\infty\,;\, -2[\cup]-2\,;\, 2[\cup[3\,;\, +\infty[$