

Exercice 1: vrai ou faux

1) 132 est un multiple de :

2) 6 est un diviseur de :

a) 4b) 3c) 9d) 132e) 0

a) 6b) 1c) 18d) 56

3) Lorsque j'ajoute deux multiples de 9, j'obtiens :
a) Un multiple de 81
b) Un multiple de 18
c) Un diviseur de 9
d) Un multiple de 9
4) Le nombre 1234567891234567890 est divisible par :
a) 2
b) 3
c) 5
d) 9
e) 11
Exercice 2
Décomposer en produit de facteurs premiers les nombres : 1998, 112, 490, 530.
Exercice 3

Montrer que la somme de deux nombres impairs est paire.

Exercice 4

- a) Soit a un multiple de 8 et b un multiple de 4. Comment peut-on écrire a et b?
- b) Soit C = a 2b. Montrer que C est un multiple de 8.
- c) Soit D=ab. Montrer que D est un multiple de 16.

Exercice 5

- a) Donner la liste des diviseurs entiers relatifs de 11.
- b) Donner la liste des diviseurs entiers naturels de 24.

Exercice 6

Effectuer la division euclidienne de a par b:

- a) Si a = 36036 et b = 75
- b) Si a = 1715 et b = 33
- c) Si a = 8 et b = 125

Exercice 7

Déterminer tous les nombres entiers naturels m inférieurs à $1\,000$, pairs, divisibles par 3 et 5 et multiples de 11.