

Correction Exercice 1: VRAI ou FAUX (6 points)

Affirmation 1: VRAIE. On met au même dénominateur (10^{120}):

$$\frac{1}{10^{118}} - \frac{1}{10^{120}} = \frac{1 \times 10^2}{10^{118} \times 10^2} - \frac{1}{10^{120}} = \frac{100}{10^{120}} - \frac{1}{10^{120}} = \boxed{\frac{99}{10^{120}}}$$

Affirmation 2 : FAUSSE. On sait que $16 = 4^2 = (-4)^2$. Donc $16^{-3} = ((-4)^2)^{-3} = (-4)^{-6}$. Simplifions l'expression en utilisant les propriétés des puissances de même base (-4) :

$$\frac{(-4)^{-2} \times 16^{-3} \times (-4)^{5}}{(-4)^{3} \times (-4)^{-6}} = \frac{(-4)^{-2} \times (-4)^{-6} \times (-4)^{5}}{(-4)^{3+(-6)}}$$
$$= \frac{(-4)^{-2-6+5}}{(-4)^{-3}}$$
$$= \frac{(-4)^{-3}}{(-4)^{-3}}$$
$$= \boxed{1}$$

Or, l'affirmation propose $(-4)^3$ (qui vaut -64). Comme $1 \neq -64$, l'affirmation est fausse.

Affirmation 3: VRAIE. Effectuons le calcul:

$$A = \frac{1}{3} + \frac{1}{6} = \frac{2}{6} + \frac{1}{6} = \frac{3}{6} = \boxed{\frac{1}{2}}$$

Or $\frac{1}{2}=0,5.$ C'est un nombre qui possède une écriture à virgule finie, c'est donc un nombre décimal.

Affirmation 4 : FAUSSE. La racine carrée d'une somme n'est pas égale à la somme des racines carrées $(\sqrt{a+b} \neq \sqrt{a} + \sqrt{b})$. Calculons pour vérifier : $\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5} \approx 4,47$. Or, $\sqrt{7} \approx 2,6$, $\sqrt{3} \approx 1,7$ et $\sqrt{10} \approx 3,1$. La somme des trois dépasse largement 4,47.

Correction Exercice 2 (6 points)

1. Développer les expressions suivantes :

•
$$A=-(2x-3)^2$$

$$A=-[(2x)^2-2\times 2x\times 3+3^2] \quad \mbox{(Identit\'e remarquable)}$$

$$A=-(4x^2-12x+9)$$

$$A=\boxed{-4x^2+12x-9}$$

•
$$B = (2a+3)(a-5) - (1-a)^2$$

$$B = (2a^2 - 10a + 3a - 15) - (1^2 - 2 \times 1 \times a + a^2)$$

$$B = (2a^2 - 7a - 15) - (1 - 2a + a^2)$$

$$B = 2a^2 - 7a - 15 - 1 + 2a - a^2$$

$$B = \boxed{a^2 - 5a - 16}$$

2. Factoriser les expressions suivantes :

•
$$C = (2x-5)(3x+7) - (5-x)(2x-5)$$
 On remarque le facteur commun $(2x-5)$.

$$C = (2x - 5)[(3x + 7) - (5 - x)]$$

$$C = (2x - 5)(3x + 7 - 5 + x)$$

$$C = \boxed{(2x - 5)(4x + 2)}$$

Note: On peut aussi factoriser 4x + 2 en 2(2x + 1), donnant 2(2x - 5)(2x + 1).

• $D = (2x - 3)^2 - 25x^2$ C'est une différence de deux carrés : $A^2 - B^2 = (A - B)(A + B)$, avec A = (2x - 3) et B = 5x (car $(5x)^2 = 25x^2$).

$$D = [(2x - 3) - 5x] \times [(2x - 3) + 5x]$$
$$D = (2x - 3 - 5x)(2x - 3 + 5x)$$
$$D = \boxed{(-3x - 3)(7x - 3)}$$

Note: On peut factoriser -3 dans le premier terme: -3(x+1)(7x-3).

Correction Exercice 3 (4 points)

On considère $E = (x+1)^2 - (x+1)(2x-3)$.

1. Développer et réduire E.

$$E = (x^{2} + 2x + 1) - (2x^{2} - 3x + 2x - 3)$$

$$E = x^{2} + 2x + 1 - (2x^{2} - x - 3)$$

$$E = x^{2} + 2x + 1 - 2x^{2} + x + 3$$

$$E = -x^{2} + 3x + 4$$

2. Calculer E pour $x = \frac{-1}{2}$. Utilisons la forme développée (souvent plus simple pour les fractions si pas de simplification évidente, mais ici la forme factorisée est aussi rapide). Utilisons la forme

factorisée trouvée ci-dessous pour changer : Forme factorisée : E=(x+1)(-x+4).

$$\begin{split} E &= \left(\frac{-1}{2} + 1\right) \left(-\left(\frac{-1}{2}\right) + 4\right) \\ &= \left(\frac{1}{2}\right) \left(\frac{1}{2} + \frac{8}{2}\right) \\ &= \frac{1}{2} \times \frac{9}{2} = \boxed{\frac{9}{4}} \quad (\text{ou } 2, 25) \end{split}$$

3. Factoriser E. Le facteur commun est (x + 1).

$$E = (x+1)(x+1) - (x+1)(2x-3)$$

$$E = (x+1)[(x+1) - (2x-3)]$$

$$E = (x+1)(x+1-2x+3)$$

$$E = (x+1)(-x+4)$$

4. Résoudre E=0. On utilise la forme factorisée (équation produit-nul) :

$$(x+1)(-x+4) = 0$$

Un produit de facteurs est nul si et seulement si l'un au moins des facteurs est nul :

$$x+1=0$$
 ou $-x+4=0$ $x=-1$ ou $x=4$

L'ensemble des solutions est $S = \{-1; 4\}$.

Correction Exercice 4 (4 points)

Commençons par simplifier les longueurs des côtés du rectangle :

- Longueur $AB = \sqrt{8} + 2\sqrt{2} = \sqrt{4 \times 2} + 2\sqrt{2} = 2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2}$.
- Largeur $BC = \sqrt{8} \sqrt{2} = 2\sqrt{2} \sqrt{2} = 1\sqrt{2}$ (soit $\sqrt{2}$).
- 1. Aire du rectangle :

$$\mathsf{Aire} = AB \times BC = (4\sqrt{2}) \times (\sqrt{2}) = 4 \times (\sqrt{2} \times \sqrt{2}) = 4 \times 2 = \boxed{8}$$

8 est bien un nombre entier.

2. Périmètre du rectangle :

$$p = 2 \times (AB + BC)$$
$$= 2 \times (4\sqrt{2} + 1\sqrt{2})$$
$$= 2 \times (5\sqrt{2})$$
$$= \boxed{10\sqrt{2}}$$

On retrouve bien le résultat demandé.

3. Longueur de la diagonale : Dans le triangle ABC rectangle en B, d'après le théorème de Pythagore :

$$AC^{2} = AB^{2} + BC^{2}$$

$$AC^{2} = (4\sqrt{2})^{2} + (\sqrt{2})^{2}$$

$$AC^{2} = (16 \times 2) + 2$$

$$AC^{2} = 32 + 2$$

$$AC^{2} = 34$$

Comme AC est une longueur, AC>0, donc $AC=\sqrt{34}$. L'élève a raison.