

La justification, la rédaction comptent pour une part importante dans la notation. Usage de la calculatrice autorisé.

Exercice 1 (3 points) - Simplifier chaque expression.

a)
$$\frac{e^{x^2} \times (e^x)^2}{e^{(x+1)^2}}$$

b)
$$\frac{e^{3+x}}{e^{3-x}}$$

c)
$$\frac{e^{2x+4} \times e^{-x+1}}{e^{x+5}}$$

Exercice 2 (5 points) - Résoudre les équations dans \mathbb{R} .

a)
$$e^{-7x} \times e^{2x+8} = e^{-x+3}$$

b)
$$\frac{e^{3x-1}}{e^{-5x+4}} = 1$$

c)
$$(e^{3x})^2 \times e^{x^2+5} = 1$$

d)
$$e^{1-x} - e^{2x^2} = 0$$

Exercice 3 (6 points) - Résoudre dans $\mathbb R$ les inéquations.

a)
$$e^{x^2+6x+5} \ge 1$$

b)
$$e^{-x^2-3x+5} > e$$

c)
$$e^{2x^2-3x-1} < (e^4)^2$$

d)
$$\frac{e^{x^2} \times (e^{-5})^3}{(e^x)^2} \le 1$$

Exercice 4 (6 points)

On considère la fonction f définie sur \mathbb{R}^* par $f(x)=\frac{e^{12x+5}}{x^3}.$

- a) Montrer qu'une expression de la dérivée de f est : $f'(x) = \frac{(12x-3)e^{12x+5}}{x^4}$.
- b) Donner le tableau de signes de cette dérivée sur \mathbb{R}^{\ast} (justifier).
- c) En déduire le tableau de variations de f sur \mathbb{R}^* . Donner les valeurs exactes des extremums le cas échéant.
- d) Donner une équation de la tangente à la courbe représentative de f au point d'abscisse -1.