

Exercice 1 (3 points):

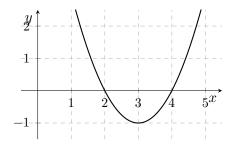
Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{4x+7}{x^2+2}$.

- a. Étudier le sens de variation de f sur l'intervalle [-5; 1].
- b. Quel est le minimum de f sur [-5; 1]? Pour quelle valeur est-il atteint?
- c. Quel est le maximum de f sur [-5;1]? Pour quelle valeur est-il atteint?

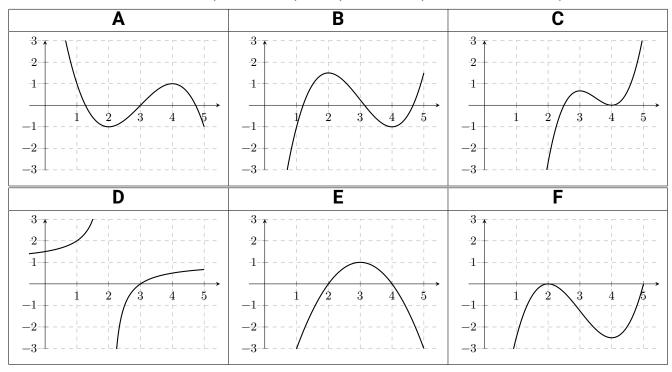
Exercice 2 (1,5 points):

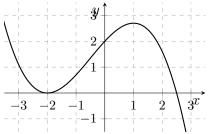
(Aucune justification n'est demandée).

1- On a ci-contre la représentation graphique de la fonction f':

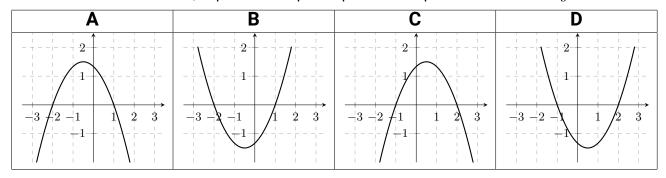


Parmi les courbes suivantes, laquelle ou lesquelles pourraient représenter la fonction f?





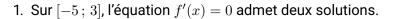
Parmi les courbes suivantes, laquelle ou lesquelles pourraient représenter la fonction g'?



Exercice 3 (3,5 points):

Soit la courbe représentative d'une fonction f définie sur $[-5\,;\,3]$ telle que f(-0,25)=0.

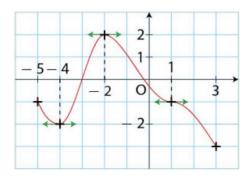
Dans chaque cas dire si l'affirmation est vraie ou fausse. Si c'est faux, expliquer pourquoi et corriger.



2.
$$f'(-3,5) < f'(-1)$$

3. Sur
$$[-5; 3]$$
, la fonction f admet 2 extremums locaux.

4. Sur
$$[-5\,;\,3]$$
, l'inéquation $f'(x)\geq 0$ admet pour ensemble de solutions $[-3\,;\,-0,25]$.



Exercice 4 (5 points):

- a- Déterminer la fonction dérivée de la fonction h définie sur $\mathbb R$ par $h(x)=(2x^3-2x^2-5x)(x^2-1)$.
- b- Déterminer la fonction dérivée de la fonction i définie sur $\mathbb{R}\setminus\left\{\frac{1}{2}\right\}$ par $i(x)=\frac{4x^3-3x-1}{2x-1}$.
- c- Déterminer la fonction dérivée de la fonction j définie sur \mathbb{R} par $j(x) = \frac{1}{2x^2 + 1}$.
- d- Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R}^+ par $f(x)=x^4\sqrt{x}$. Simplifier l'écriture au maximum.

Exercice 5 (5 points):

On considère la fonction f définie sur l'intervalle [-2;3] par $f(x)=-2x^3+3x^2+12x+15$ et $\mathcal C$ sa courbe représentative dans un repère du plan.

- 1. Déterminer la dérivée de f.
- 2. Déterminer une équation de la tangente T à $\mathcal C$ au point d'abscisse 1.
- 3. On s'intéresse à la position de la courbe $\mathcal C$ par rapport à la tangente T. On considère la fonction g définie sur $[-2\,;\,3]$ par g(x)=f(x)-(12x+16). Étudier le sens de variation de g sur $[-2\,;\,3]$.
- 4. a. Calculer g(-0, 5).
 - b. En déduire le signe de g sur [-2; 3].
 - c. Déterminer la position de T par rapport à \mathcal{C} sur [-2; 3].

Exercice 6 (2 points):

Je suis une fonction définie sur \mathbb{R} par $f(x) = x^3 - ax^2 + b$ avec a et b deux nombres réels. J'admets un minimum local égal à 5, atteint pour x=2. Qui suis-je?