

EXERCICE 1: (7 points)

Dans chacun des cas suivants, déterminer l'ensemble de définition de la fonction f, l'ensemble de dérivabilité, puis calculer f'(x) sur son ensemble de dérivabilité.

1.
$$f(x) = (2x - 3) \times \sqrt{x}$$

$$2. \ f(x) = \frac{1}{x^2 - 5x + 8}$$

3.
$$f(x) = \frac{-3x+1}{x^2-2}$$

EXERCICE 2: (5,5 points)

Soit la fonction f définie et dérivable sur l'intervalle [-3; 4]représentée par la courbe $\mathcal C$ ci-contre.

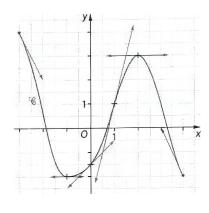
Sur cette courbe sont également représentées les tangentes aux points d'abscisses -3; -1; 0; 1; 2; 4.

- 1. Déterminer par lecture graphiques f'(-1), f(2) et f'(1).
- 2. Résoudre, en justifiant, dans [-3; 4] les inéquations suivantes:

a)
$$f(x) > 0$$

a)
$$f(x) > 0$$
 b) $f'(x) > 0$ c) $f'(x) = 0$

c)
$$f'(x) = 0$$



EXERCICE 3: (7,5 points)

Soit la fonction f définie sur $\mathbb{R}\setminus\{3\}$ par $f(x)=\frac{-x^2+4x-7}{3-x}$ et \mathcal{C}_f sa courbe représentative dans un repère.

- 1. Montrer que, pour tout $x de \mathbb{R} \setminus \{3\}$, on a : $f'(x) = \frac{x^2 6x + 5}{(3 x)^2}$.
- a) Étudier les variations de f sur son ensemble de définition.
 - b) La fonction f présente-t-elle des extrema locaux? Si oui, lesquels.
- 3. Déterminer l'équation de la tangente T à la courbe \mathcal{C}_f au point d'abscisse 2.