

Correction de l'exercice 1

- 1. La suite (u_n) est arithmétique de raison r=-2 et de premier terme $u_1=0,5$.
 - a. La forme récurrente est donnée par la relation $u_{n+1}=u_n+r$. Donc $u_{n+1}=u_n-2$
 - b. Le premier terme est u_1 . La formule explicite est $u_n=u_1+(n-1)r$. $u_n=0, 5+(n-1)\times (-2)=0, 5-2n+2=2, 5-2n$. Donc $u_n=2, 5-2n$.
 - c. On calcule u_{13} avec la formule précédente : $u_{13}=2,5-2\times 13=2,5-26=-23,5.$ $\boxed{u_{13}=-23,5}$.
 - d. La raison r=-2 est strictement négative. Par conséquent, la suite (u_n) est **strictement décroissante**.
 - e. On veut calculer la somme des 11 premiers termes, qui sont u_1,u_2,\ldots,u_{11} . Il y a 11 termes. $S = \text{nombre de termes} \times \frac{\text{premier terme} + \text{dernier terme}}{2} = 11 \times \frac{u_1 + u_{11}}{2}.$ On calcule $u_{11} = 2, 5 2 \times 11 = 2, 5 22 = -19, 5.$ $S = 11 \times \frac{0,5 + (-19,5)}{2} = 11 \times \frac{-19}{2} = 11 \times (-9,5) = -104, 5.$ La somme est $\boxed{-104,5}$.
- 2. La suite (v_n) est géométrique de raison $q=\frac{1}{2}$ et de premier terme $v_0=-1$.
 - a. La forme récurrente est $v_{n+1}=q imes v_n$. Donc $\left|v_{n+1}=rac{1}{2}v_n
 ight|$
 - b. La formule explicite est $v_n=v_0 imes q^n$. Donc $v_n=-1 imes \left(rac{1}{2}
 ight)^n=-\left(rac{1}{2}
 ight)^n$
 - c. On calcule $v_{20}=-\left(\frac{1}{2}\right)^{20}=-\frac{1}{2^{20}}=-\frac{1}{1048576}$. $v_{20}\approx -9,54\times 10^{-7}$
 - d. On a $v_0=-1<0$ et la raison $q=\frac{1}{2}$ est comprise dans l'intervalle]0;1[. Une suite géométrique avec un premier terme négatif et une raison dans]0;1[est **strictement croissante**.
 - e. On veut la somme des 11 premiers termes, de v_0 à v_{10} . Il y a 10-0+1=11 termes. $S' = \text{premier terme} \times \frac{1-q^{\text{nb de termes}}}{1-q} = v_0 \times \frac{1-q^{11}}{1-q}.$ $S' = -1 \times \frac{1-(\frac{1}{2})^{11}}{1-\frac{1}{2}} = -1 \times \frac{1-\frac{1}{2048}}{\frac{1}{2}} = -2 \times \left(\frac{2048-1}{2048}\right) = -2 \times \frac{2047}{2048} = -\frac{2047}{1024}.$ La somme est $\left[-\frac{2047}{1024} \approx -1,999\right]$.

Correction de l'exercice 2

1. La masse initiale est de 1 kg, soit 1000 g. Donc $u_0=1000$. Chaque jour, la masse augmente de 20 %, ce qui revient à la multiplier par $1+\frac{20}{100}=1,2$. Ensuite, on perd 100 g.

Pour passer de la masse du jour n (u_n) à celle du jour n+1 (u_{n+1}), on effectue donc ces deux opérations : $u_{n+1}=u_n\times 1, 2-100$. On retrouve bien la formule $u_{n+1}=1, 2u_n-100$, avec un premier terme $u_0=1000\,\mathrm{g}$.

- 2. On pose $v_n = u_n 500$.
 - a. Pour montrer que (v_n) est une suite géométrique, on exprime v_{n+1} en fonction de v_n .

$$v_{n+1} = u_{n+1} - 500$$
$$= (1, 2u_n - 100) - 500$$
$$= 1, 2u_n - 600$$

On factorise par 1,2 pour faire apparaître u_n-500 :

$$v_{n+1} = 1, 2\left(u_n - \frac{600}{1, 2}\right)$$
$$= 1, 2(u_n - 500)$$
$$= 1, 2v_n$$

Ceci prouve que la suite (v_n) est géométrique de raison q=1,2.

b. On calcule d'abord le premier terme de (v_n) : $v_0=u_0-500=1000-500=500$. La formule explicite de v_n est $v_n=v_0\times q^n$, donc $v_n=500\times 1,2^n$.

Comme
$$v_n=u_n-500$$
, on a $u_n=v_n+500$. On en déduit l'expression de u_n : $u_n=500\times 1, 2^n+500$

c. L'objectif est de 30 kg, soit $30\,000$ g. On cherche le plus petit entier n tel que $u_n > 30\,000$.

$$500 \times 1, 2^{n} + 500 > 30000$$

 $500 \times 1, 2^{n} > 29500$
 $1, 2^{n} > \frac{29500}{500}$
 $1, 2^{n} > 59$

On utilise la calculatrice pour trouver n (par tâtonnement ou avec le mode table).

- $1,2^{22}\approx 55,04$ (insuffisant)
- $1,2^{23} \approx 66,05$ (suffisant)

Il faudra donc attendre 23 jours pour que la masse de bactéries dépasse 30 kg.

d. On étudie la limite de $u_n = 500 \times 1, 2^n + 500$ quand n tend vers $+\infty$. La raison de la suite

géométrique est q=1,2. Comme q>1, on a $\lim_{n\to+\infty}1,2^n=+\infty$. Par conséquent, $\lim_{n\to+\infty}u_n=+\infty$. La masse de bactéries tend à **croître sans limite**.

Correction de l'exercice 3

- 1. a. Le premier jour, la distance est $d_1=50$ km. Chaque jour, la performance diminue de 1%, ce qui revient à multiplier la distance de la veille par $1-\frac{1}{100}=0,99.$ $d_2=d_1\times 0,99=50\times 0,99=49,5$ km. $d_3=d_2\times 0,99=49,5\times 0,99=49,005$ km. $d_1=50$, $d_2=49,5$, $d_3=49,005$.
 - b. Pour passer du jour n au jour n+1, on multiplie la distance par 0,99. La relation de récurrence est donc $d_{n+1}=0,99\times d_n$.
 - c. Cette relation montre que **la suite** (d_n) **est géométrique**. Son premier terme est $\boxed{d_1=50}$ et sa raison est $\boxed{q=0,99}$. L'expression explicite est $d_n=d_1\times q^{n-1}$. Donc $\boxed{d_n=50\times 0,99^{n-1}}$.
- 2. La distance totale L_n est la somme des distances parcourues chaque jour : $L_n = d_1 + d_2 + \cdots + d_n$. C'est la somme des n premiers termes de la suite géométrique (d_n) .

$$L_n = d_1 \times \frac{1 - q^n}{1 - q}$$

$$L_n = 50 \times \frac{1 - 0,99^n}{1 - 0,99}$$

$$L_n = 50 \times \frac{1 - 0,99^n}{0,01}$$

$$L_n = 5000 \times (1 - 0,99^n)$$

La distance totale parcourue au bout de n jours est $L_n = 5000(1-0,99^n)$

- 3. On étudie l'expression $L_n=5000(1-0,99^n)$. Pour tout entier $n\geq 1$, on a $0,99^n>0$. Donc $1-0,99^n<1$. En multipliant par 5000 (qui est positif), on obtient : $5000(1-0,99^n)<5000$. Cela signifie que $L_n<5000$ pour tout n.
 - **Conclusion sur le pari :** Le globetrotter n'atteindra **jamais** les 5000 km. La distance totale qu'il parcourt s'en approchera infiniment, mais sans jamais l'atteindre. Il va donc **perdre son pari**.

4. On cherche le nombre minimal de jours N pour parcourir 4999 km. On résout $L_N \geq 4999$.

$$\begin{array}{l} 5000(1-0,99^N)\geq 4999\\ 1-0,99^N\geq \frac{4999}{5000}\\ 1-0,99^N\geq 0,9998\\ -0,99^N\geq 0,9998-1\\ -0,99^N\geq -0,0002\\ 0,99^N\leq 0,0002 \quad \text{(On multiplie par -1, on change le sens)} \end{array}$$

On utilise la calculatrice pour trouver N.

- Essayons N=800 : $0.99^{800} \approx 0.00032 > 0.0002$ (insuffisant)
- Essayons N=850 : $0,99^{850}\approx 0,00019 < 0,0002$ (suffisant)

On affine:

- $0.99^{848} \approx 0.000204$
- $0,99^{849} \approx 0,000201$
- $0.99^{850} \approx 0.000199$

Le plus petit entier N est 850. Il lui faudrait 850 jours pour parcourir 4999 km.