

### Correction de l'exercice n°1

L'énoncé indique que le quota de pêche était de 500 tonnes en 2018 et qu'il diminue de 30 tonnes chaque année. L'année de référence est 2019, qui correspond donc à n=0. Le quota en 2019 est donc  $u_0=500-30=470$  tonnes. La suite  $(u_n)$  modélise le quota pour l'année 2019+n.

- 1) L'année 2021 correspond à n=2. Le quota en 2020 (n=1) est  $u_1=u_0-30=470-30=440$  tonnes. Le quota en 2021 (n=2) est  $u_2=u_1-30=440-30=410$  tonnes. Le quota pour 2021 est donc de 410 tonnes.
- 2) Pour passer d'une année à la suivante, on soustrait 30 tonnes au quota. On a donc la relation  $u_{n+1}=u_n-30$ . C'est la définition d'une **suite arithmétique**. Ses éléments caractéristiques sont :
  - son premier terme  $u_0 = 470$ .
  - sa raison r = -30.
- 3) La formule explicite d'une suite arithmétique est  $u_n = u_0 + n \times r$ . On a donc :  $u_n = 470 30n$
- 4) Pour calculer  $u_{10}$ , on remplace n par 10 dans la formule :  $u_{10} = 470 30 \times 10 = 470 300 = 170$ .  $\boxed{u_{10} = 170}$ . Ce nombre représente le quota de pêche autorisé en tonnes pour l'année 2019 + 10, c'est-à-dire **en 2029**.
- 5) On cherche l'année pour laquelle le quota sera inférieur à 200 tonnes. Cela revient à résoudre l'inéquation  $u_n < 200$ .

$$u_n < 200 \Leftrightarrow 470 - 30n < 200$$
  $\Leftrightarrow -30n < 200 - 470$   $\Leftrightarrow -30n < -270$   $\Leftrightarrow 30n > 270$  (Attention, on change le sens de l'inégalité)  $\Leftrightarrow n > \frac{270}{30}$   $\Leftrightarrow n > 9$ 

L'entier n doit être strictement supérieur à 9. Le premier entier qui convient est donc n=10. L'année correspondante est 2019+10=2029. C'est à partir de l'année 2029 que le quota sera inférieur à 200 tonnes.

### Correction de l'exercice n°2

1) Le débit  $d_n$  augmente de 3 % chaque jour. Augmenter une valeur de 3 % revient à la multiplier par  $1+\frac{3}{100}=1,03$ . Pour passer du débit du jour n au débit du jour n+1, on multiplie donc par 1,03. La relation est :  $d_{n+1}=1,03\times d_n$ .



C'est la définition d'une **suite géométrique** de raison q = 1,03 et de premier terme  $d_1 = 300$ .

2) Le mois de mars contient 31 jours. On doit calculer le volume total, c'est-à-dire la somme des débits journaliers du 1<sup>er</sup> au 31 mars :  $V=d_1+d_2+\cdots+d_{31}$ .

On utilise la formule de la somme des termes d'une suite géométrique : S= premier terme  $\times$   $1-q^{\rm nombre\ de\ termes}$ 

$$1-q$$

- Premier terme :  $d_1 = 300$
- Raison : q = 1,03
- · Nombre de termes : 31

$$V = 300 \times \frac{1 - 1,03^{31}}{1 - 1,03}$$

$$V = 300 \times \frac{1 - 1,03^{31}}{-0,03}$$

$$V \approx 300 \times \frac{1 - 2,50009}{-0,03}$$

$$V \approx 300 \times \frac{-1,50009}{-0,03}$$

$$V \approx 15000,9$$

Le volume total d'eau apporté est d'environ  $15\,000,9\,\mathrm{m}^3$  . Note : un calcul plus précis donne 15000,94...

## Correction de l'exercice n°3

1) On a  $u_4 = 12$  et  $u_{10} = -10$ . La formule reliant deux termes d'une suite arithmétique est  $u_p = u_k + (p - k)r$ .

$$u_{10} = u_4 + (10 - 4)r \Leftrightarrow -10 = 12 + 6r$$
$$\Leftrightarrow -22 = 6r$$
$$\Leftrightarrow r = \frac{-22}{6} = -\frac{11}{3}$$

La raison est  $r = -\frac{11}{3}$ 

Pour calculer  $u_{13}$ , on peut partir de  $u_{10}$  :  $u_{13} = u_{10} + (13 - 10)r = -10 + 3 \times \left(-\frac{11}{3}\right) = -10 - 11 = -21$ . Donc  $u_{13} = -21$ .



2) On a  $v_3=6$ ,  $v_5=1,5$  et la raison q est négative. La formule est  $v_p=v_k\times q^{p-k}$ .

$$v_5 = v_3 \times q^{5-3} \Leftrightarrow 1, 5 = 6 \times q^2$$
$$\Leftrightarrow q^2 = \frac{1, 5}{6} = \frac{1}{4}$$

Les solutions sont  $q=\sqrt{\frac{1}{4}}=\frac{1}{2}$  ou  $q=-\sqrt{\frac{1}{4}}=-\frac{1}{2}.$  Comme la raison est négative, on choisit  $q=-\frac{1}{2}$ .

(L'énoncé demande  $u_0$ , il s'agit d'une coquille, on calcule  $v_0$ .)  $v_3 = v_0 \times q^3 \Leftrightarrow 6 = v_0 \times \left(-\frac{1}{2}\right)^3 \Leftrightarrow 6 = v_0 \times \left(-\frac{1}{8}\right) \Leftrightarrow v_0 = 6 \times (-8) = -48$ . Le premier terme est  $v_0 = -48$ .

3) On veut calculer  $S=u_0+u_1+\cdots+u_{10}$  avec  $u_n=n+2^n+1$ . On peut décomposer la somme :  $S=\sum_{k=0}^{10}(k+2^k+1)=\sum_{k=0}^{10}(k+1)+\sum_{k=0}^{10}2^k$ .

Première somme A :  $A=\sum_{k=0}^{10}(k+1)=(0+1)+(1+1)+\cdots+(10+1)=1+2+\cdots+11$ . C'est la somme d'une suite arithmétique de premier terme 1, de raison 1, et avec 11 termes.  $A=11\times\frac{1+11}{2}=11\times 6=66$ .

**Deuxième somme B**:  $B=\sum_{k=0}^{10}2^k=2^0+2^1+\cdots+2^{10}$ . C'est la somme d'une suite géométrique de premier terme 1, de raison 2, et avec 11 termes.  $B=1\times\frac{1-2^{11}}{1-2}=\frac{1-2048}{-1}=2047$ .

Finalement, S = A + B = 66 + 2047 = 2113. Donc S = 2113.

# Correction de l'exercice n°4

On a  $C_0 = 8\,000$ .

- a) Pour obtenir le capital de l'année n+1, on applique au capital de l'année n une augmentation de 3,8 % (multiplication par 1,038), puis on prélève 76. La relation de récurrence est donc :  $\overline{ C_{n+1} = 1,038 \times C_n 76 }$ .
- b) On pose  $D_n=C_n-2000$ . Exprimons  $D_{n+1}$  en fonction de  $D_n$ .

$$D_{n+1}=C_{n+1}-2000 \qquad \qquad \text{(définition de la suite } D_n)$$
 
$$=(1,038\times C_n-76)-2000 \qquad \qquad \text{(on remplace } C_{n+1})$$
 
$$=1,038\times C_n-2076$$



Comme  $D_n=C_n-2000$ , on a  $C_n=D_n+2000$ . On substitue :

$$D_{n+1} = 1,038 \times (D_n + 2000) - 2076$$

$$= 1,038 \times D_n + 1,038 \times 2000 - 2076$$

$$= 1,038 \times D_n + 2076 - 2076$$

$$= 1,038 \times D_n$$

La relation  $D_{n+1} = 1,038 \times D_n$  prouve que la suite  $(D_n)$  est géométrique de raison q = 1,038.

- c) Pour trouver l'expression de  $D_n$ , il nous faut son premier terme  $D_0$ .  $D_0 = C_0 2000 = 8000 2000 = 6000$ . La formule explicite est  $D_n = D_0 \times q^n$ . Donc  $D_n = 6000 \times 1,038^n$ .
- d) On a  $C_n = D_n + 2000$ . En remplaçant  $D_n$  par son expression, on obtient :  $C_n = 6000 \times 1,038^n + 2000$ .
- e) Au bout de 10 ans, on calcule  $C_{10}$  :  $C_{10} = 6000 \times 1,038^{10} + 2000 \approx 8706,554...$  Au bout de 10 ans, elle possédera environ 8706,55.
- f) Combien d'années sont nécessaires pour que son capital augmente de 50 %? Le capital initial est de  $8\,000$ . Une augmentation de 50 % correspond à un capital cible de  $8\,000 \times 1, 5 = 12\,000$ . On cherche donc le plus petit entier n tel que  $C_n \ge 12\,000$ .

On part de l'inéquation :

$$6000 \times 1,038^{n} + 2000 \ge 12000$$
$$6000 \times 1,038^{n} \ge 10000$$
$$1,038^{n} \ge \frac{10000}{6000}$$
$$1,038^{n} \ge \frac{5}{3}$$

Comme  $\frac{5}{3} \approx 1,667$ , on cherche le plus petit entier n tel que  $1,038^n \geq 1,667$ .

À ce niveau, on ne dispose pas d'outil algébrique pour isoler n. On utilise donc la calculatrice par essais successifs ou avec la fonction tableur.

### Méthode avec le mode Table de la calculatrice

On définit la fonction  $f(x)=1,038^x$  (ou la suite  $u_n=1,038^n$ ) et on observe le tableau de valeurs. On cherche la première valeur de x pour laquelle f(x) est supérieure à  $5/3\approx 1,667$ .

| n  | $1,038^n$         |
|----|-------------------|
|    |                   |
| 13 | $\approx 1,62$    |
| 14 | pprox <b>1,68</b> |
|    | •••               |



La table confirme que la condition est remplie pour la première fois lorsque n=14.

Il faudra donc **14 années** pour que son capital augmente de 50 %. n = 14.

### Correction de l'exercice n°5

On a une suite arithmétique de premier terme  $u_0=5$  et de raison r=2. La somme  $S_n=u_0+u_1+\cdots+u_n$  est la somme de n+1 termes. La formule est  $S_n=$  (nombre de termes) $\times \frac{\text{premier terme}+\text{dernier terme}}{2}=(n+1)\times \frac{u_0+u_n}{2}$ .

Exprimons d'abord  $u_n$  en fonction de n :  $u_n = u_0 + n \times r = 5 + 2n$ . On remplace  $u_n$  dans la formule de la somme :

$$S_n = (n+1) \times \frac{5 + (5 + 2n)}{2}$$

$$S_n = (n+1) \times \frac{10 + 2n}{2}$$

$$S_n = (n+1) \times (5+n)$$

$$S_n = n^2 + 5n + n + 5 = n^2 + 6n + 5$$

On cherche n tel que  $S_n=10\,605$ . On doit donc résoudre l'équation du second degré :

$$n^2 + 6n + 5 = 10605$$
$$n^2 + 6n - 10600 = 0$$

On calcule le discriminant  $\Delta = b^2 - 4ac$  :  $\Delta = 6^2 - 4 \times 1 \times (-10600) = 36 + 42400 = 42436$ . Le discriminant est positif, il y a deux racines réelles.  $\sqrt{\Delta} = \sqrt{42436} = 206$ . Les solutions sont :  $n_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-6 - 206}{2} = \frac{-212}{2} = -106$ .  $n_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-6 + 206}{2} = \frac{200}{2} = 100$ .

Comme n est un entier naturel (un nombre d'années, non-nul d'après l'énoncé), la solution  $n_1 = -106$  est rejetée. La seule solution possible est n = 100. La valeur de l'entier n est 100.