

Correction de l'exercice n°1

1. La suite (u_n) est une suite arithmétique de raison r=3 et de terme $u_7=12$.

Pour calculer u_{20} , on utilise la formule explicite d'une suite arithmétique reliant u_n et u_p :

$$u_n = u_p + (n - p) \times r.$$

Avec n=20 et p=7, on a :

$$u_{20} = u_7 + (20 - 7) \times r$$

$$u_{20} = 12 + 13 \times 3$$

$$u_{20} = 12 + 39$$

$$u_{20} = 51$$

Le terme u_{20} est donc 51.

2. La suite (u_n) est définie par $u_0=3$ et la relation de récurrence $u_{n+1}=u_n+7$.

Cette relation de récurrence est de la forme $u_{n+1}=u_n+r$. On reconnaît donc une suite arithmétique de raison r=7 et de premier terme $u_0=3$.

Pour calculer u_{20} , on utilise la formule du terme général en fonction de u_0 : $u_n = u_0 + n \times r$.

Pour n=20:

$$u_{20} = u_0 + 20 \times r$$

$$u_{20} = 3 + 20 \times 7$$

$$u_{20} = 3 + 140$$

$$u_{20} = 143$$

Le terme u_{20} est donc $\boxed{143}$.

Correction de l'exercice n°2

1. On veut calculer $S = 10 + 13 + 16 + \cdots + 163$.

Les termes de cette somme forment une suite arithmétique (u_n) de premier terme $u_0=10$ et de raison r=13-10=3.

 $\text{La formule de la somme des termes est} : S = \text{nombre de termes} \times \frac{\text{premier terme} + \text{dernier terme}}{2}$

Il faut d'abord déterminer le nombre de termes. Pour cela, on cherche l'indice n du dernier terme, 163:

$$u_n = 163 \Leftrightarrow u_0 + n \times r = 163$$

 $\Leftrightarrow 10 + 3n = 163$
 $\Leftrightarrow 3n = 153$
 $\Leftrightarrow n = \frac{153}{3} = 51$

Le dernier terme est u_{51} . Comme la somme commence à u_0 , il y a 51-0+1=52 termes.

On peut maintenant calculer la somme :

$$S = 52 \times \frac{10 + 163}{2}$$

$$S = 52 \times \frac{173}{2}$$

$$S = 26 \times 173$$

$$S = 4498$$

La somme S est égale à $\boxed{4498}$.

2. On veut calculer la somme W des 100 premiers nombres pairs. On considère les nombres pairs non nuls.

Il s'agit de la somme $W=2+4+6+\ldots$

Les nombres pairs forment une suite arithmétique de premier terme $u_1=2$ et de raison r=2. Le $100^{\mathrm{\`e}me}$ nombre pair est $u_{100}=2\times 100=200$.

Il y a 100 termes dans cette somme.

$$W = 100 \times \frac{\text{premier terme} + \text{dernier terme}}{2}$$

$$W = 100 \times \frac{2 + 200}{2}$$

$$W = 100 \times \frac{202}{2}$$

$$W = 100 \times 101$$

$$W = 10100$$

La somme W des 100 premiers nombres pairs est $\boxed{10100}$.

Correction de l'exercice n°3

1. On sait que $v_3 = 6$ et $v_8 = 1458$.

La formule reliant deux termes d'une suite géométrique est $v_n = v_p \times q^{n-p}$. Avec n = 8 et p = 3:

$$v_8 = v_3 \times q^{8-3} \Leftrightarrow 1458 = 6 \times q^5$$

 $\Leftrightarrow q^5 = \frac{1458}{6}$
 $\Leftrightarrow q^5 = 243$

Comme $3^5=243$, on en déduit que la raison est $\boxed{q=3}$

Pour trouver le premier terme v_0 , on utilise v_3 :

$$v_3 = v_0 \times q^3 \Leftrightarrow 6 = v_0 \times 3^3$$
$$\Leftrightarrow 6 = v_0 \times 27$$
$$\Leftrightarrow v_0 = \frac{6}{27} = \frac{2}{9}$$

Le premier terme est $v_0 = \frac{2}{9}$.

L'expression du terme général est $v_n=v_0\times q^n$, donc $v_n=\frac{2}{9}\times 3^n$. On peut aussi l'écrire $v_n=2\times 3^{-2}\times 3^n=2\times 3^{n-2}$.

2. On sait que $v_{21} = 65\,536$ et $v_{23} = 262\,144$.

On applique la même méthode :

$$v_{23} = v_{21} \times q^{23-21} \Leftrightarrow 262\,144 = 65\,536 \times q^2$$

 $\Leftrightarrow q^2 = \frac{262\,144}{65\,536}$
 $\Leftrightarrow q^2 = 4$

Il y a deux solutions possibles pour la raison : q=2 ou q=-2. L'énoncé ne permettant pas de trancher, nous devons étudier les deux cas.

Cas 1: q = 2

$$v_{21} = v_0 \times q^{21} \Leftrightarrow 65\,536 = v_0 \times 2^{21}$$

 $\Leftrightarrow v_0 = \frac{65\,536}{2^{21}}$

Sachant que $65\,536=2^{16}$, on a $v_0=\frac{2^{16}}{2^{21}}=2^{16-21}=2^{-5}=\frac{1}{32}$. Dans ce cas, $\boxed{q=2}$, $\boxed{v_0=\frac{1}{32}}$ et $\boxed{v_n=\frac{1}{32}\times 2^n}$ (ou $v_n=2^{n-5}$).

Cas 2 : q = -2

$$v_{21} = v_0 \times q^{21} \Leftrightarrow 65\,536 = v_0 \times (-2)^{21}$$

$$\Leftrightarrow v_0 = \frac{65\,536}{(-2)^{21}} = \frac{2^{16}}{-2^{21}} = -2^{-5} = -\frac{1}{32}$$

Dans ce cas,
$$q=-2$$
 , $v_0=-rac{1}{32}$ et $v_n=-rac{1}{32} imes (-2)^n$.

Correction de l'exercice n°4

1. On veut calculer $S = 2 + 6 + 18 + 54 + \cdots + 13122$.

Les termes de cette somme forment une suite géométrique de premier terme $v_0=2$ et de raison $q=\frac{6}{2}=3$.

La formule de la somme est S= premier terme \times $\frac{1-q^{\mathsf{nombre\ de\ termes}}}{1-q}.$

On cherche le nombre de termes. Soit $v_n=13\,122$ le dernier terme.

$$v_n = v_0 \times q^n \Leftrightarrow 13\,122 = 2 \times 3^n$$

$$\Leftrightarrow 3^n = \frac{13\,122}{2} = 6\,561$$

À l'aide de la calculatrice, on trouve que $3^8=6\,561$, donc n=8. La somme va de v_0 à v_8 , il y a donc 8-0+1=9 termes.

On applique la formule:

$$S = 2 \times \frac{1 - 3^9}{1 - 3} = 2 \times \frac{1 - 19683}{-2}$$
$$S = -(1 - 19683)$$
$$S = 19682$$

La somme S est égale à $\boxed{19\,682}$.

2. On veut calculer $T = 3 - 6 + 12 - 24 + \cdots + 192$.

C'est la somme des termes d'une suite géométrique de premier terme $v_0=3$ et de raison $q=\frac{-6}{3}=-2$.

On cherche le nombre de termes. Soit $v_n=192$ le dernier terme.

$$v_n = v_0 \times q^n \Leftrightarrow 192 = 3 \times (-2)^n$$
$$\Leftrightarrow (-2)^n = \frac{192}{3} = 64$$

Comme $2^6=64$, et que le résultat est positif, n doit être pair. On a donc n=6. La somme va de v_0 à v_6 , il y a donc 6-0+1=7 termes.

On applique la formule :

$$T = 3 \times \frac{1 - (-2)^7}{1 - (-2)} = 3 \times \frac{1 - (-128)}{1 + 2}$$

$$T = 3 \times \frac{129}{3}$$

$$T = 129$$

La somme T est égale à $\boxed{129}$.

Correction de l'exercice n°5

1. a. On part de $p_0 = 5000$.

Pour calculer p_1 , on enlève 20 % de la surface (ce qui revient à la multiplier par 1-0,20=0,8) puis on ajoute les 250 m² semés. $p_1=p_0\times 0,8+250=5\,000\times 0,8+250=4\,000+250=4\,250$. Donc $p_1=4\,250\,\mathrm{m}^2$.

On répète le processus pour p_2 à partir de p_1 : $p_2=p_1\times 0, 8+250=4\,250\times 0, 8+250=3\,400+250=3\,650.$ Donc $p_2=3\,650$ m 2 .

b. Pour passer de l'année n (surface p_n) à l'année n+1 (surface p_{n+1}), on effectue les mêmes opérations : on multiplie par 0,8 et on ajoute 250.

La relation de récurrence est donc : $p_{n+1} = 0.8 \times p_n + 250$

- 2. On pose $v_n = p_n 1250$.
 - a. Pour justifier que (v_n) est une suite géométrique, on exprime v_{n+1} en fonction de v_n .

$$v_{n+1}=p_{n+1}-1\,250$$
 (par définition de la suite v_n)
$$=(0,8\times p_n+250)-1\,250$$
 (on remplace p_{n+1})
$$=0,8\times p_n-1\,000$$

On cherche à faire apparaître $v_n = p_n - 1250$. Pour cela, on factorise par 0,8:

$$v_{n+1} = 0, 8 \times (p_n - \frac{1000}{0, 8})$$
$$= 0, 8 \times (p_n - 1250)$$
$$= 0, 8 \times v_n$$

On a bien une relation de la forme $v_{n+1}=q\times v_n$. La suite (v_n) est donc une suite géométrique de raison q=0,8.

Son premier terme est : $v_0 = p_0 - 1250 = 5000 - 1250 = 3750$. Le premier terme est $v_0 = 3750$.

- b. L'expression du terme général d'une suite géométrique est $v_n=v_0\times q^n$. On a donc : $v_n=3\,750\times 0,8^n$.
- c. On sait que $v_n=p_n-1\,250$, donc $p_n=v_n+1\,250$. En remplaçant v_n par son expression, on obtient : $p_n=3\,750\times 0, 8^n+1\,250$.
- d. On s'intéresse au comportement de p_n quand n devient très grand ("au bout d'un nombre important d'années").

On regarde la limite de la suite (p_n) . Le terme $0, 8^n$ est le seul qui dépend de n. Comme -1 < 0, 8 < 1, la limite de $0, 8^n$ quand n tend vers $+\infty$ est 0.

$$\lim_{n \to +\infty} 0, 8^n = 0.$$

Par conséquent : $\lim_{n \to +\infty} p_n = 3750 \times 0 + 1250 = 1250$.

On peut donc en déduire que, sur le long terme, la surface de pelouse va se stabiliser et tendre vers $1250 \ m^2$.