

Exercice 1 (5 points)

ABC est un triangle tel que AB=6, AC=7 et $\overrightarrow{AB}\cdot\overrightarrow{AC}=21$.

- 1. Calculer une mesure de l'angle \widehat{BAC} . On arrondira cette mesure à l'unité de degré.
- 2. a) Calculer $\|\overrightarrow{BA} + \overrightarrow{AC}\|^2$.
 - b) En déduire BC.
- 3. a) Vérifier que pour tous vecteurs \vec{u} et \vec{v} : $||\vec{u} \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 2\vec{u} \cdot \vec{v}$.
 - b) Utiliser cette relation pour calculer les produits scalaires $\overrightarrow{CA} \cdot \overrightarrow{CB}$ et $\overrightarrow{BA} \cdot \overrightarrow{BC}$.

Exercice 2 (4 points)

ABCD est un parallélogramme tel que : AB=5, AD=3 et $\widehat{DAB}=60^{\circ}$.

- 1. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AD}$.
- 2. Calculer la longueur BD.
- 3. Calculer la longueur AC.

Exercice 3 (4 points)

Soient A et B deux points tels que AB=6.

1. Donner et tracer l'ensemble des points M vérifiant $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$ lorsque :

a)
$$k = 0$$

b)
$$k = -2$$

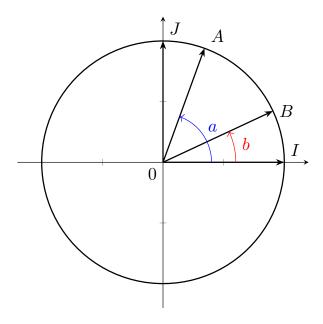
c)
$$k = 4$$

** On pourra utiliser le milieu O de [AB] pour prouver que $\overrightarrow{MA} \cdot \overrightarrow{MB} = MO^2 - OA^2$ **

- 2. Que peut-on dire de l'ensemble des points M tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = -12$?
- 3. Soit Δ , une droite qui coupe (AB) en A.
 - a) Placer sur Δ , en justifiant, le point C tel que $\overrightarrow{AB} \cdot \overrightarrow{AC} = 3$.
 - b) Où sont situés les points M tels que $\overrightarrow{AB} \cdot \overrightarrow{AM} = 3$?

Exercice 4 (7 points)

Dans le plan muni d'un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$, on considère le cercle de centre O et de rayon 1. A et B sont deux points de ce cercle.



- 1. Écrire les coordonnées des vecteurs \overrightarrow{OA} et \overrightarrow{OB} en fonction des angles a et b.
- 2. Calculer le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$ à l'aide des coordonnées obtenues à la question précédente.
- 3. Exprimer l'angle \widehat{BOA} en fonction de a et b puis calculer le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$ en utilisant la première formule définissant le produit scalaire.
- 4. Déduire des questions précédentes une expression de $\cos(a-b)$, puis celle de $\cos(a+b)$.
- 5. À partir des valeurs exactes des angles $\frac{\pi}{6}$ et $\frac{\pi}{4}$, déterminer les valeurs exactes de $\cos\left(\frac{\pi}{12}\right)$ et $\sin\left(\frac{\pi}{12}\right)$.