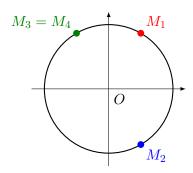


Exercice 1:

- 1. Pour placer les points, on cherche leur mesure principale (l'angle équivalent dans $]-\pi$; π]).
 - $M_1: \frac{\pi}{3}$. C'est déjà une mesure principale.
 - $M_2: \frac{17\pi}{3} = \frac{18\pi \pi}{3} = 6\pi \frac{\pi}{3}$. Comme $6\pi = 3 \times 2\pi$, cet angle est équivalent à $-\frac{\pi}{3}$.
 - $M_3: \frac{38\pi}{3} = \frac{36\pi + 2\pi}{3} = 12\pi + \frac{2\pi}{3}$. Comme $12\pi = 6 \times 2\pi$, cet angle est équivalent à $\frac{2\pi}{3}$.
 - M_4 : $\frac{3}{3} = \frac{48\pi + 2\pi}{3} = 16\pi + \frac{2\pi}{3}$. Comme $16\pi = 8 \times 2\pi$, cet angle est aussi équivalent à

Les points M_3 et M_4 sont donc confondus.



2. En utilisant les mesures principales trouvées :

a)
$$\cos\left(\frac{17\pi}{3}\right) = \cos\left(-\frac{\pi}{3}\right)$$

= $\cos\left(\frac{\pi}{3}\right) = \boxed{\frac{1}{2}}$.

a)
$$\cos\left(\frac{17\pi}{3}\right) = \cos\left(-\frac{\pi}{3}\right)$$
 b) $\sin\left(-\frac{38\pi}{3}\right) = \sin\left(-\frac{2\pi}{3}\right)$ c) $\cos\left(\frac{50\pi}{3}\right)$ $= \cos\left(\frac{\pi}{3}\right) = \left[\frac{1}{2}\right]$. $= \cos\left(\frac{2\pi}{3}\right) = \left[-\frac{1}{2}\right]$

Exercice 2:

On a $\cos x = \frac{\sqrt{5}}{2}$.

1. On utilise la relation fondamentale $\cos^2(x) + \sin^2(x) = 1$.

$$\sin^2(x) = 1 - \cos^2(x)$$
$$= 1 - \left(\frac{\sqrt{5}}{3}\right)^2 = 1 - \frac{5}{9} = \frac{4}{9}$$

Les deux valeurs possibles pour $\sin x$ sont donc $\left|\frac{2}{3}\right|$ et $\left|-\frac{2}{3}\right|$.

2. On sait que $x \in \left[-\frac{\pi}{2}; 0\right]$. Cet intervalle correspond au quatrième quadrant, où le sinus est

3. On utilise $\cos x = \frac{\sqrt{5}}{3}$ et $\sin x = -\frac{2}{3}$.

a)
$$\begin{cases} \cos(-x) = \cos(x) = \boxed{\frac{\sqrt{5}}{3}} \\ \sin(-x) = -\sin(x) = \boxed{\frac{2}{3}} \end{cases}$$

c)
$$\begin{cases} \cos(\pi - x) = -\cos(x) = \boxed{-\frac{\sqrt{5}}{3}} \\ \sin(\pi - x) = \sin(x) = \boxed{-\frac{2}{3}} \end{cases}$$

b)
$$\begin{cases} \cos(x+\pi) = -\cos(x) = \boxed{-\frac{\sqrt{5}}{3}} \\ \sin(x+\pi) = -\sin(x) = \boxed{\frac{2}{3}} \end{cases}$$

d)
$$\begin{cases} \cos\left(\frac{\pi}{2} - x\right) = \sin(x) = \boxed{-\frac{2}{3}} \\ \sin\left(\frac{\pi}{2} - x\right) = \cos(x) = \boxed{\frac{\sqrt{5}}{3}} \end{cases}$$

Exercice 3:

1.
$$\cos(x) = \frac{1}{2} \sup]-\pi ; \pi].$$
 $\mathcal{S} = \left\{-\frac{\pi}{3}; \frac{\pi}{3}\right\}.$

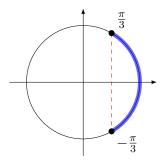
2.
$$2\sin(x) = -1 \Leftrightarrow \sin(x) = -\frac{1}{2} \text{ sur } [0; 2\pi[.] \mathcal{S} = \left\{\frac{7\pi}{6}; \frac{11\pi}{6}\right\}].$$

3.
$$\sqrt{2}\cos(x) + 1 = 0 \Leftrightarrow \cos(x) = -\frac{\sqrt{2}}{2} \operatorname{sur} \left[0; 6\pi\right[. \left[\mathcal{S} = \left\{\frac{3\pi}{4}; \frac{5\pi}{4}; \frac{11\pi}{4}; \frac{13\pi}{4}; \frac{19\pi}{4}; \frac{21\pi}{4}\right\}\right]$$

4.
$$2\sin(x) + \sqrt{3} = 0 \Leftrightarrow \sin(x) = -\frac{\sqrt{3}}{2} \operatorname{sur}] - 2\pi ; \pi].$$
 $\mathcal{S} = \left\{ -\frac{2\pi}{3} ; -\frac{\pi}{3} \right\}.$

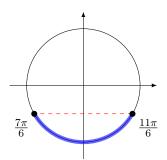
Exercice 4:

1. $\cos(x) \geq \frac{1}{2} \sin [-\pi; \pi]$. On cherche sur le cercle les points dont l'abscisse (le cosinus) est supérieure ou égale à $\frac{1}{2}$. Les bornes sont données par les solutions de $\cos(x) = \frac{1}{2}$, soit $-\frac{\pi}{3}$ et $\frac{\pi}{3}$.



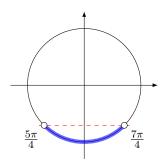
$$\mathcal{S} = \left[-\frac{\pi}{3} \, ; \, \frac{\pi}{3} \right].$$

2. $2\sin(x) \le -1 \Leftrightarrow \sin(x) \le -\frac{1}{2} \sin\left[0\,;\, 2\pi\right[$. On cherche les points dont l'ordonnée (le sinus) est inférieure ou égale à $-\frac{1}{2}$. Les bornes sont $\frac{7\pi}{6}$ et $\frac{11\pi}{6}$.



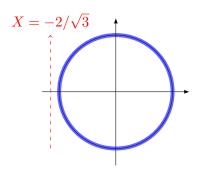
$$\mathcal{S} = \left[\frac{7\pi}{6} \, ; \, \frac{11\pi}{6}\right]$$

3. $\sqrt{2}\sin(x)+1<0\Leftrightarrow\sin(x)<-\frac{\sqrt{2}}{2}$ sur $[0\,;\,2\pi[$. On cherche les points dont l'ordonnée est strictement inférieure à $-\frac{\sqrt{2}}{2}$. Les bornes (exclues) sont $\frac{5\pi}{4}$ et $\frac{7\pi}{4}$.



$$\mathcal{S} = \left] \frac{5\pi}{4} \, ; \, \frac{7\pi}{4} \right[$$

4. $\sqrt{3}\cos(x) + 2 \ge 0 \Leftrightarrow \cos(x) \ge -\frac{2}{\sqrt{3}}$. On sait que $\sqrt{3} \approx 1.732$, donc $-\frac{2}{\sqrt{3}} \approx -1.155$. Comme la valeur minimale de $\cos(x)$ est -1, la condition $\cos(x) \ge -1.155$ est toujours vraie.



$$S =]-\pi ; \pi]$$

Exercice 5:

a) On simplifie chaque terme de A(x).

•
$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

•
$$cos(3\pi + x) = cos(\pi + x) = -cos(x)$$

•
$$\cos(-x) = \cos(x)$$

$$A(x) = 3(\cos x) + 2\cos x - \cos x - 2\cos x = (3 + 2 - 1 - 2)\cos x$$
. On a bien $A(x) = 2\cos x$.

b) Résoudre
$$A(x) = -\sqrt{2}$$
 revient à résoudre $2\cos x = -\sqrt{2}$, soit $\cos x = -\frac{\sqrt{2}}{2}$ sur $]-\pi\,;\,\pi].$

$$\mathcal{S} = \left\{ -\frac{3\pi}{4} \, ; \, \frac{3\pi}{4} \right\}.$$