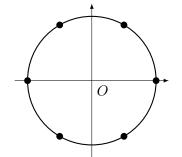


Exercice 1:

1. Sur le cercle trigonométrique ci-contre, placer les points M_1 , M_2 , M_3 , M_4 repérés respectivement par les angles $\frac{\pi}{3}$, $\frac{17\pi}{3}$, $\frac{38\pi}{3}$, $\frac{50\pi}{3}$.



2. Donner alors sans justification:

a)
$$\cos\left(\frac{17\pi}{3}\right)$$

a)
$$\cos\left(\frac{17\pi}{3}\right)$$
 b) $\sin\left(-\frac{38\pi}{3}\right)$ c) $\cos\left(\frac{50\pi}{3}\right)$

c)
$$\cos\left(\frac{50\pi}{3}\right)$$

Exercice 2:

On considère un angle x en radian tel que $\cos x = \frac{\sqrt{5}}{3}$.

- 1. Quelles sont les valeurs possibles de $\sin x$?
- 2. Déterminer $\sin x$ sachant que $x \in \left[-\frac{\pi}{2}; 0 \right]$.
- 3. Compléter alors :

a)
$$\begin{cases} \cos(-x) = \dots \\ \sin(-x) = \dots \end{cases}$$

b)
$$\begin{cases} \cos(x+\pi) = \dots \\ \sin(x+\pi) = \dots \end{cases}$$

c)
$$\begin{cases} \cos(\pi - x) = \dots \\ \sin(\pi - x) = \dots \end{cases}$$

b)
$$\begin{cases} \cos(x+\pi) = \dots \\ \sin(x+\pi) = \dots \end{cases}$$
d)
$$\begin{cases} \cos\left(\frac{\pi}{2} - x\right) = \dots \\ \sin\left(\frac{\pi}{2} - x\right) = \dots \end{cases}$$

Exercice 3:

Résoudre les équations suivantes sur l'intervalle donné :

1.
$$\cos(x) = \frac{1}{2} \sin \left[-\pi \; ; \; \pi \right]$$

2.
$$2\sin(x) = -1 \text{ sur } [0; 2\pi[$$

3.
$$\sqrt{2}\cos(x) + 1 = 0 \text{ sur } [0; 6\pi]$$

4.
$$2\sin(x) + \sqrt{3} = 0 \text{ sur }]-2\pi; \pi]$$

Exercice 4:

Résoudre les inéquations suivantes sur l'intervalle donné :

- $1. \ \cos(x) \geq \frac{1}{2} \ \mathrm{sur} \] \pi \ ; \ \pi]$
- 2. $2\sin(x) \le -1 \text{ sur } [0; 2\pi[$
- 3. $\sqrt{2}\sin(x) + 1 < 0 \text{ sur } [0; 2\pi[$
- 4. $\sqrt{3}\cos(x) + 2 \ge 0 \text{ sur }]-\pi; \pi]$

Exercice 5:

On considère l'expression $A(x)=3\sin\left(\frac{\pi}{2}-x\right)+2\cos x+\cos(3\pi+x)-2\cos(-x).$

- a) Montrer que $A(x) = 2\cos x$.
- b) En déduire les solutions de l'équation $A(x) = -\sqrt{2}$ avec $x \in]-\pi \, ; \, \pi].$