

Exercice n°1

Pour placer les points, on cherche pour chaque réel sa mesure principale ou une mesure équivalente simple.

- Pour $A\left(\frac{2\pi}{3}\right)$: C'est un angle de référence.
- Pour $B\left(\frac{17\pi}{6}\right)$: On décompose la fraction. $\frac{17\pi}{6}=\frac{12\pi+5\pi}{6}=\frac{12\pi}{6}+\frac{5\pi}{6}=2\pi+\frac{5\pi}{6}$. Le point B est donc confondu avec le point d'angle $\frac{5\pi}{6}$.
- Pour $C\left(-\frac{25\pi}{3}\right)$: On cherche un multiple de 2π proche. $-\frac{25\pi}{3}=-\frac{24\pi+\pi}{3}=-\frac{24\pi}{3}-\frac{\pi}{3}=-8\pi-\frac{\pi}{3}=-4\times 2\pi-\frac{\pi}{3}$. Le point C est donc confondu avec le point d'angle $-\frac{\pi}{3}$.
- Pour $D\left(-\frac{45\pi}{12}\right)$: On simplifie d'abord la fraction. $-\frac{45\pi}{12}=-\frac{15\times3\pi}{4\times3}=-\frac{15\pi}{4}.$ Ensuite, on décompose : $-\frac{15\pi}{4}=-\frac{16\pi-\pi}{4}=-4\pi+\frac{\pi}{4}.$ Le point D est donc confondu avec le point d'angle $\frac{\pi}{4}.$

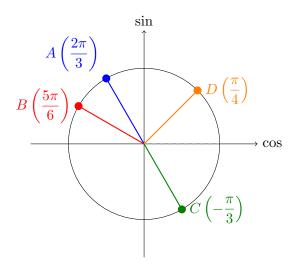


FIGURE 1 – Placement des points sur le cercle trigonométrique.

Exercice n°2

On a $\cos(x) = 0, 4$ et $x \in]-\pi; 0[$.

a) Pour calculer $\sin(x)$, on utilise la relation fondamentale de la trigonométrie : $\cos^2(x) + \sin^2(x) = 1$.

$$\sin^{2}(x) = 1 - \cos^{2}(x)$$
$$\sin^{2}(x) = 1 - (0, 4)^{2}$$
$$\sin^{2}(x) = 1 - 0, 16$$
$$\sin^{2}(x) = 0, 84$$

Donc, $\sin(x) = \sqrt{0.84}$ ou $\sin(x) = -\sqrt{0.84}$.

On sait que $x\in]-\pi$; 0[. Sur cet intervalle (troisième et quatrième quadrants), le sinus est négatif. On choisit donc la solution négative. $\sin(x)=-\sqrt{0,84}\approx -0,917.$

$$\sin(x) \approx -0.917$$

b) On cherche x tel que $\cos(x)=0,4$ et $x\in]-\pi\,;\,0[$. À l'aide de la calculatrice, la solution de $\cos(x)=0,4$ dans l'intervalle $[0\,;\,\pi]$ est $x_0=\arccos(0,4)\approx 1,159$ rad.

Les solutions de l'équation $\cos(x)=0,4$ sont de la forme $x=x_0+2k\pi$ ou $x=-x_0+2k\pi$, avec $k\in\mathbb{Z}.$

On cherche la solution qui appartient à l'intervalle $]-\pi$; 0[.

- Pour $x=1,159+2k\pi$: aucune valeur de k ne donne un résultat dans $]-\pi$; 0[.
- Pour $x = -1,159 + 2k\pi$: si k = 0, on obtient x = -1,159.

On vérifie que -1,159 est bien dans l'intervalle $]-\pi$; 0[(car $-\pi\approx -3,14$). C'est la seule solution.

$$x \approx -1,159 \text{ rad}$$

Exercice n°3

On a $\cos(x) = 0.8$ et $\sin(x) = 0.6$.

- a) et
- b) Le point A a pour coordonnées $(\cos(x); \sin(x))$, soit A(0, 8; 0, 6).

Le point B est associé au réel $x+\pi$. Ses coordonnées sont : $(\cos(x+\pi); \sin(x+\pi)) = (-\cos(x); -\sin(x)) = (-0, 8; -0, 6)$. B est le symétrique de A par rapport à l'origine O.

Le point C est associé au réel $\pi-x$. Ses coordonnées sont : $(\cos(\pi-x)\,;\,\sin(\pi-x))=(-\cos(x)\,;\,\sin(x))=(-0,8\,;\,0,6)$. C est le symétrique de A par rapport à l'axe des ordonnées.

c) D'après les calculs précédents : Pour le réel $x + \pi$: $\cos(x + \pi) = -0.8$ et $\sin(x + \pi) = -0.6$

Pour le réel
$$\pi - x$$
: $\cos(\pi - x) = -0.8$ et $\sin(\pi - x) = 0.6$.

Exercice n°4

Soit $f(x) = -5\cos(x)$ définie sur \mathbb{R} .

a) On calcule f(-x): $f(-x) = -5\cos(-x)$. La fonction cosinus est paire, donc $\cos(-x) = \cos(x)$ pour tout réel x. Ainsi, $f(-x) = -5\cos(x) = f(x)$.

Puisque f(-x) = f(x), la fonction f est **paire**. La conséquence graphique est que sa courbe représentative \mathcal{C}_f est **symétrique par rapport à l'axe des ordonnées**.

b) On calcule $f(x+2\pi)$: $f(x+2\pi)=-5\cos(x+2\pi)$. La fonction cosinus est périodique de période 2π , donc $\cos(x+2\pi)=\cos(x)$ pour tout réel x. Ainsi, $f(x+2\pi)=-5\cos(x)=f(x)$.

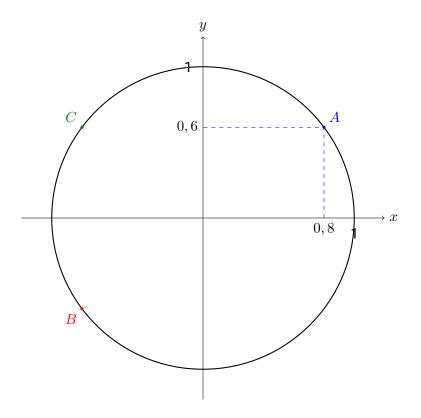


FIGURE 2 – Placement des points A, B et C.

Puisque $f(x+2\pi)=f(x)$, la fonction f est 2π -périodique. La conséquence graphique est que sa courbe représentative \mathcal{C}_f se répète à l'identique sur chaque intervalle de longueur 2π . On peut l'obtenir en entier par des translations de vecteur $k\times 2\pi\vec{\imath}$ ($k\in\mathbb{Z}$) de la courbe tracée sur un intervalle de longueur 2π .

c) Calcul de valeurs :

•
$$f(0) = -5\cos(0) = -5 \times 1 = \boxed{-5}$$
.

•
$$f(\pi/4) = -5\cos(\pi/4) = -5 \times \frac{\sqrt{2}}{2} = -\frac{5\sqrt{2}}{2} \approx -3,54$$

•
$$f(\pi/2) = -5\cos(\pi/2) = -5 \times 0 = \boxed{0}$$
.

•
$$f(3\pi/4) = -5\cos(3\pi/4) = -5 \times \left(-\frac{\sqrt{2}}{2}\right) = \boxed{\frac{5\sqrt{2}}{2} \approx 3,54}$$
.

d) Tracé de la courbe :

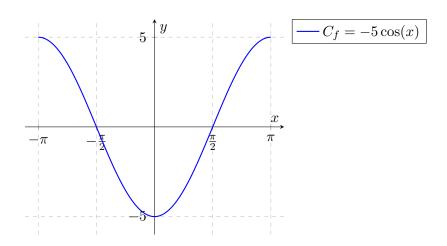


FIGURE 3 – Courbe représentative de la fonction f sur $[-\pi\,;\,\pi].$