

Exercice 1:

Tout d'abord, complétons le tableau de probabilités à partir des données fournies.

- On sait que $P(\overline{B})=0.36$ et que la somme des probabilités totales est 1, donc : $P(B)=1-P(\overline{B})=1-0.36=0.64$
- Dans la ligne de \overline{B} , on a $P(A \cap \overline{B}) + P(\overline{A} \cap \overline{B}) = P(\overline{B})$. On nous donne $P(\overline{A} \cap \overline{B}) = 0.2$. Donc, $P(A \cap \overline{B}) = P(\overline{B}) P(\overline{A} \cap \overline{B}) = 0.36 0.2 = 0.16$.
- On peut maintenant calculer P(A): $P(A) = P(A \cap B) + P(A \cap \overline{B}) = 0.32 + 0.16 = 0.48$.
- On en déduit $P(\overline{A})$: $P(\overline{A}) = 1 P(A) = 1 0.48 = 0.52$.
- Enfin, on peut trouver la dernière case manquante, $P(\overline{A}\cap B): P(\overline{A}\cap B) = P(B) P(A\cap B) = 0.64 0.32 = 0.32.$

Voici le tableau complété :

	A	\overline{A}	Total
В	0.32	0.32	0.64
\overline{B}	0.16	0.2	0.36
Total	0.48	0.52	1

Analysons maintenant chaque affirmation:

1. Affirmation : $P(\overline{B}) = 0.2$

Faux. D'après le tableau (donnée de l'énoncé), la probabilité de l'événement \overline{B} est $P(\overline{B})=0.36$.

2. **Affirmation**: P(A) = 0.48

Vrai. En utilisant la formule des probabilités totales, la probabilité de l'événement A est la somme des probabilités des intersections avec A : $P(A) = P(A \cap B) + P(A \cap \overline{B}) = 0.32 + 0.16 = 0.48$.

3. Affirmation : $P(\overline{A} \cap B) = 0.32$

Vrai. D'après nos calculs pour compléter le tableau : $P(\overline{A} \cap B) = P(B) - P(A \cap B) = 0.64 - 0.32 = 0.32$.

4. **Affirmation** : $P_A(B) = 0.5$

Faux. Par définition de la probabilité conditionnelle :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

En utilisant les valeurs du tableau :

$$P_A(B) = \frac{0.32}{0.48} = \frac{32}{48} = \frac{2 \times 16}{3 \times 16} = \frac{2}{3}$$

Or, $\frac{2}{3}\approx 0.67$, ce qui est différent de 0.5.

Exercice 2:

- 1. On nous donne $P(\overline{A})=0.7$, P(B)=0.7 et $P(A\cup B)=0.9$.
 - Calcul de $P(A\cap B)$ D'abord, calculons la probabilité de l'événement A :

$$P(A) = 1 - P(\overline{A}) = 1 - 0.7 = 0.3$$

On utilise ensuite la formule de la probabilité de l'union de deux événements :

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

On isole $P(A \cap B)$:

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$

On remplace par les valeurs numériques :

$$P(A \cap B) = 0.3 + 0.7 - 0.9 = 0.1$$

La probabilité de l'intersection $A \cap B$ est de 0.1.

• Calcul de $P_A(B)$ On utilise la définition de la probabilité conditionnelle de B sachant A :

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

On remplace par les valeurs calculées :

$$P_A(B) = \frac{0.1}{0.3} = \frac{1}{3}$$

La probabilité de B sachant A est de $\frac{1}{3}$.

2. Démonstration

On veut montrer que $P_B(A) + P_B(\overline{A}) = 1$ pour $P(B) \neq 0$.

Par définition de la probabilité conditionnelle :

$$P_B(A) = \frac{P(B \cap A)}{P(B)}$$
 et $P_B(\overline{A}) = \frac{P(B \cap \overline{A})}{P(B)}$

En additionnant les deux termes :

$$P_B(A) + P_B(\overline{A}) = \frac{P(B \cap A)}{P(B)} + \frac{P(B \cap \overline{A})}{P(B)}$$

On met sur le même dénominateur :

$$P_B(A) + P_B(\overline{A}) = \frac{P(B \cap A) + P(B \cap \overline{A})}{P(B)}$$

Les événements A et \overline{A} forment une partition de l'univers. D'après la formule des probabilités totales, la somme $P(B \cap A) + P(B \cap \overline{A})$ est égale à P(B).

On a donc:

$$P_B(A) + P_B(\overline{A}) = \frac{P(B)}{P(B)}$$

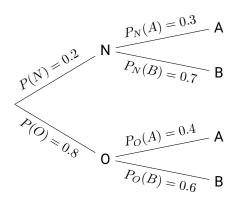
Comme $P(B) \neq 0$, on peut simplifier :

$$P_B(A) + P_B(\overline{A}) = 1$$

Ce qu'il fallait démontrer.

Exercice 3:

- 1. (a) 20% des ventes concernent des voitures neuves, donc P(N) = 0.2.
 - (b) Parmi les voitures neuves, 3 sur 10 sont de la marque A. Il s'agit de la probabilité de A sachant N, donc $P_N(A)=\frac{3}{10}=0.3$.
- 2. (a) Arbre de probabilité:



(b) i. On cherche la probabilité que la fiche concerne une voiture neuve de marque B, c'est-à-dire $P(N\cap B)$.

$$P(N \cap B) = P(N) \times P_N(B)$$

$$P(N \cap B) = 0.2 \times 0.7 = 0.14$$

La probabilité d'acheter une voiture neuve de marque B est de 0.14.

ii. On nous donne P(B)=0.62. On veut démontrer que $P(O\cap B)=0.48$. D'après la formule des probabilités totales, l'événement B peut être décomposé selon qu'il est

réalisé avec N ou avec O:

$$P(B) = P(N \cap B) + P(O \cap B)$$

On isole le terme recherché:

$$P(O \cap B) = P(B) - P(N \cap B)$$

On remplace par les valeurs connues :

$$P(O \cap B) = 0.62 - 0.14 = 0.48$$

La propriété est bien démontrée.

iii. On cherche la probabilité que le véhicule soit de marque B sachant qu'il a été acheté d'occasion, c'est-à-dire $P_O(B)$.

$$P_O(B) = \frac{P(O \cap B)}{P(O)}$$

$$P_O(B) = \frac{0.48}{0.8} = \frac{48}{80} = \frac{6 \times 8}{10 \times 8} = 0.6$$

La probabilité que le véhicule soit de marque B sachant qu'il est d'occasion est de 0.6. (On peut maintenant compléter la dernière branche de l'arbre).

- (c) Pour savoir si les événements B et 0 sont indépendants, on compare $P(O \cap B)$ et le produit $P(O) \times P(B)$.
 - D'une part, on a calculé $P(O \cap B) = 0.48$.
 - · D'autre part, on calcule le produit :

$$P(O) \times P(B) = 0.8 \times 0.62 = 0.496$$

Comme $P(O \cap B) \neq P(O) \times P(B)$ (car $0.48 \neq 0.496$), les événements B et O ne sont pas indépendants.