

Exercice 1: (4 points)

Dans chaque cas, donner la réponse exacte sans justifier. Une seule réponse est correcte.

- 1. La suite (u_n) définie par $u_n = 3n^2 5$ semble :
 - (A) Diverge vers $+\infty$
- (B) Converge vers -5
- (C) Converge vers 3
- (D) Diverge vers $-\infty$

- 2. Le terme qui suit un terme u_n est :
 - (A) $u_n + 1$
- (B) u_{n+1}
- (C) u_1

- (D) u_{2n}
- 3. La suite (u_n) définie sur \mathbb{N}^* par $u_0=2$ et $u_{n+1}=\frac{u_n}{(n+1)^2}$ semble :
 - (A) Décroissante
- (B) Croissante
- (C) Ni croissante, ni décroissante
- (D) Constante
- 4. La fonction f définie sur $[1\,;\,+\infty[$ par $f(x)=(x-1)^2$ est croissante. On en déduit que la suite (u_n) est croissante à partir du rang 1 avec :

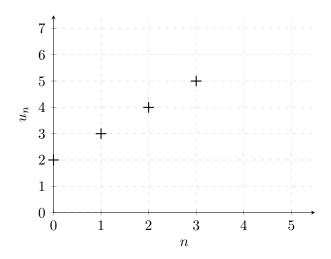
(A)
$$u_n = (u_n - 1)^2$$
 (B) $u_n = (n - 1)^2$ (C) $u_n = n^2 - 1$

(B)
$$u_n = (n-1)^2$$

(C)
$$u_n = n^2 - 1$$

(D)
$$u_{n+1} = (u_n - 1)^2$$

5. Dans un repère, on représente les premiers termes d'une suite (u_n) . Une expression de cette suite est:



(A)
$$u_0 = 2$$

et $u_{n+1} = 1, 5u_n$

(B)
$$u_n = n + 2$$

(C)
$$u_0 = 2$$

et $u_{n+1} = u_n + 1$

(D)
$$u_n = 1, 5n$$

Exercice 2: (8,5 points)

Étudier le sens de variation des suites suivantes :

- a. Pour tout entier naturel n, $u_n = 0, 8^n$.
- b. Pour tout entier naturel n, $u_n = (n+1)^2 n$.
- c. $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = u_n + 5$.
- d. $u_0 = 1$ et pour tout entier naturel n, $u_{n+1} = u_n + n^2 4$.

Exercice 3: (7,5 points)

Une revue spécialisée est diffusée uniquement par abonnement. Une étude statistique a permis de constater que d'une année sur l'autre, 20% des abonnés ne renouvellent pas leur abonnement et 580 nouvelles personnes souscrivent un abonnement. En 2010, il y avait 2 000 abonnés à cette revue.

- 1. Donner une estimation du nombre d'abonnés à cette revue en 2011 puis en 2012.
- 2. Pour tout entier naturel n, on note u_n le nombre d'abonnés à la revue l'année (2010 + n).
 - a. Justifier que pour tout entier naturel n, $u_{n+1} = 0$, $8u_n + 580$.
 - b. Compléter l'algorithme suivant qui permet d'obtenir le plus petit entier naturel n tel que $u_n > 2800$.

```
def seuil():
    n=0
    u= .....
while .....:
    u= ......
    n= .....
return n
```

- c. À l'aide de la calculatrice, déterminer le plus petit entier naturel n tel que $u_n>2800$. Donner une interprétation concrète du résultat.
- d. À l'aide de la calculatrice conjecturer les variations et la limite de la suite (u_n) . En donner une interprétation concrète.