

Exercice 1

- 1. On considère la suite (u_n) définie par $u_n = \frac{n+2}{n+1}$.
 - a. Calcul des termes de la suite (u_n)

Pour
$$n = 0$$
: $u_0 = \frac{0+2}{0+1} = \frac{2}{1} = 2$.

Pour
$$n = 1$$
: $u_1 = \frac{1+2}{1+1} = \frac{3}{2}$.

Pour
$$n = 2$$
: $u_2 = \frac{2+2}{2+1} = \frac{4}{3}$.

Pour
$$n = 99$$
: $u_{99} = \frac{99+2}{99+1} = \frac{101}{100}$.

$$u_0 = 2$$
, $u_1 = \frac{3}{2}$, $u_2 = \frac{4}{3}$ et $u_{99} = \frac{101}{100}$

b. Sens de variation de la suite (u_n)

Pour étudier la monotonie de la suite (u_n) , on étudie le signe de la différence $u_{n+1}-u_n$ pour tout $n \in \mathbb{N}$.

L'expression de
$$u_{n+1}$$
 est : $u_{n+1} = \frac{(n+1)+2}{(n+1)+1} = \frac{n+3}{n+2}$.

On calcule la différence :

$$u_{n+1} - u_n = \frac{n+3}{n+2} - \frac{n+2}{n+1}$$

$$= \frac{(n+3)(n+1)}{(n+2)(n+1)} - \frac{(n+2)(n+2)}{(n+2)(n+1)}$$

$$= \frac{(n^2+n+3n+3) - (n^2+4n+4)}{(n+2)(n+1)}$$

$$= \frac{n^2+4n+3-n^2-4n-4}{(n+2)(n+1)}$$

$$= \frac{-1}{(n+2)(n+1)}$$

Pour tout entier naturel n, on a n+1>0 et n+2>0. Le dénominateur (n+2)(n+1) est donc strictement positif. Le numérateur est -1, qui est strictement négatif.

Par conséquent, pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n < 0$.

La suite (u_n) est strictement décroissante sur \mathbb{N} .

2. Sens de variation de la suite (v_n) définie par $v_n=3^n\times n$

Les premiers termes sont $v_0=3^0\times 0=0$ et $v_1=3^1\times 1=3$. Pour $n\geq 1$, les termes v_n sont strictement positifs. On peut donc comparer le quotient $\frac{v_{n+1}}{v_n}$ à 1.

Pour tout $n \ge 1$:

$$\frac{v_{n+1}}{v_n} = \frac{3^{n+1} \times (n+1)}{3^n \times n} = \frac{3 \times 3^n \times (n+1)}{3^n \times n} = 3 \times \frac{n+1}{n}$$

Or, pour tout $n\geq 1$, on a n+1>n, donc $\frac{n+1}{n}>1$. En multipliant par 3, on obtient $3\times\frac{n+1}{n}>3$, et donc $\frac{v_{n+1}}{v_n}>1$.

Comme $v_n>0$ pour $n\geq 1$, on en déduit que $v_{n+1}>v_n$. La suite est donc strictement croissante à partir du rang 1. De plus, on a $v_1>v_0$ (3 >0).

La suite (v_n) est strictement croissante sur \mathbb{N} .

- 3. On considère la suite (w_n) définie par $w_n = -n^2 + 6n$.
 - a. Monotonie de la suite (w_n)

On étudie le signe de la différence $w_{n+1} - w_n$.

$$w_{n+1} = -(n+1)^2 + 6(n+1) = -(n^2 + 2n + 1) + 6n + 6 = -n^2 + 4n + 5.$$

$$w_{n+1} - w_n = (-n^2 + 4n + 5) - (-n^2 + 6n)$$
$$= -n^2 + 4n + 5 + n^2 - 6n$$
$$= -2n + 5$$

Le signe de la différence dépend du signe de -2n+5.

- $-2n+5>0 \iff 5>2n \iff n<2,5$. Pour $n\in\{0,1,2\}$, la suite est croissante.
- $-2n+5=0 \iff n=2,5$. Ce cas n'est pas possible pour n entier.
- $-2n+5 < 0 \iff 5 < 2n \iff n > 2, 5$. Pour $n \ge 3$, la suite est strictement décroissante.

La suite (w_n) est croissante jusqu'au rang 2, puis strictement décroissante à partir du rang 3.

b. Conjecture sur la limite de la suite (w_n)

D'après la représentation graphique, on observe que lorsque n devient très grand, les points représentant les termes de la suite sont de plus en plus bas sur l'axe des ordonnées.

On peut conjecturer que la limite de la suite (w_n) est $-\infty$.

Exercice 2

Soit la suite (v_n) définie par $v_0=3$ et $v_{n+1}=\frac{2v_n}{v_n^2+3}$.

1. Calcul de v_1 et v_2

On calcule v_1 en remplaçant n par 0 dans la relation de récurrence :

$$v_1 = \frac{2v_0}{v_0^2 + 3} = \frac{2 \times 3}{3^2 + 3} = \frac{6}{9 + 3} = \frac{6}{12} = \frac{1}{2}$$

On calcule v_2 en remplaçant n par 1 :

$$v_2 = \frac{2v_1}{v_1^2 + 3} = \frac{2 \times \frac{1}{2}}{\left(\frac{1}{2}\right)^2 + 3} = \frac{1}{\frac{1}{4} + 3} = \frac{1}{\frac{1}{4} + \frac{12}{4}} = \frac{1}{\frac{13}{4}} = \frac{4}{13}$$

$$v_1 = \frac{1}{2}$$
 et $v_2 = \frac{4}{13}$

2. Valeurs approchées de v_{10} et v_{100}

En utilisant le mode suite de la calculatrice, on entre la relation de récurrence et on lit les valeurs dans la table :

$$v_{10} \approx 0,103 \text{ et } v_{100} \approx 0,010$$

3. Conjecture sur la limite de la suite (v_n)

On observe que les termes de la suite sont de plus en plus petits et semblent se rapprocher de zéro. Les valeurs de v_{10} et v_{100} confirment cette tendance.

On peut conjecturer que la limite de la suite (v_n) est 0.

Exercice 3

1. Affichage de l'algorithme

La boucle for i in range (0, N+1) exécute les instructions qu'elle contient pour chaque entier i allant de 0 jusqu'à N. À chaque tour, l'algorithme calcule la valeur de $v=i^2+2i$ puis l'affiche.

Cet algorithme affiche, les uns en dessous des autres, les termes de rang 0 à N d'une suite.

2. Expression de la suite (v_n)

Le terme de rang n correspond à la valeur calculée par l'algorithme lorsque la variable de boucle i est égale à n. L'expression est donc donnée par le calcul effectué dans la boucle.

La suite affichée est définie par l'expression explicite $v_n=n^2+2n$ pour tout $n\in\mathbb{N}.$

Exercice 4

Soit u_n le nombre d'allumettes à l'étape n, pour $n \ge 1$.

En comptant les allumettes sur les figures fournies, on obtient :

- Étape 1 : $u_1 = 3$.
- Étape 2 : $u_2 = 7$.
- Étape 3 : $u_3 = 11$.

On observe que l'on passe d'un terme au suivant en ajoutant 4 : $u_2 = u_1 + 4$ et $u_3 = u_2 + 4$.

Pour passer de l'étape n à l'étape n+1, on ajoute une nouvelle structure composée de 4 allumettes (deux pour le "toit", une pour la base et une pour la séparation verticale).

La suite
$$(u_n)$$
 peut donc être modélisée par la relation de récurrence suivante :
$$\begin{cases} u_1 = 3 \\ u_{n+1} = u_n + 4 \end{cases}$$
 pour tout $n \geq 1$

Exercice 5

Soit u_n le nombre de cétacés au 1^{er} janvier de l'année 2017 + n, avec $u_0 = 3000$.

1. Justification de $u_1 = 2930$

Le nombre de cétacés au début de 2017 est $u_0=3000$. Perdre 5 % de l'effectif revient à le multiplier par le coefficient multiplicateur $1-\frac{5}{100}=0,95$. On ajoute ensuite les 80 nouveaux cétacés. Le calcul pour l'année suivante est donc

$$u_1 = u_0 \times \left(1 - \frac{5}{100}\right) + 80 = 3000 \times 0,95 + 80 = 2850 + 80 = 2930$$

Le nombre de cétacés au début de l'année 2018 est bien $u_1 = 2930$.

2. Relation de récurrence entre u_{n+1} et u_n

Le processus se répète chaque année. Pour passer de l'effectif u_n à l'effectif de l'année suivante u_{n+1} , on applique la même transformation : on multiplie par 0,95 et on ajoute 80.

Pour tout entier naturel n, la relation de récurrence est $u_{n+1} = 0,95 \times u_n + 80$.

3. Complétion de l'algorithme

La boucle while doit continuer tant que le nombre de cétacés u est supérieur ou égal à 2000. À chaque passage dans la boucle, on doit mettre à jour la valeur de u en utilisant la relation de récurrence, et incrémenter le compteur d'années n.


```
def seuil():
    n=0
    u=3000
    while u >= 2000 :
        u = 0.95 * u + 80
        n = n + 1
    return (n)
```

4. Recherche de la valeur avec la calculatrice

On utilise le mode récurrence de la calculatrice pour calculer les termes successifs de la suite (u_n) jusqu'à ce que le terme devienne inférieur à 2000.

En parcourant la table de valeurs, on trouve :

...

- $u_{23} \approx 2014, 1$
- $u_{24} \approx 1993, 4$

Le premier rang n pour lequel u_n est strictement inférieur à 2000 est n=24. Cela correspond à l'année 2017+24=2041.

La valeur trouvée avec la calculatrice, et donc retournée par l'algorithme, est n=24.