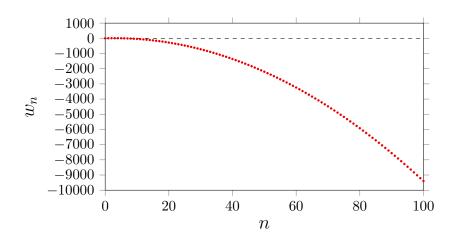


Exercice 1 (8 pts)

- 1. On considère la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{n+2}{n+1}$.
 - a. Calculer u_0 , u_1 , u_2 puis u_{99} .
 - b. Déterminer le sens de variation de la suite (u_n) .
- 2. On considère la suite (v_n) définie sur $\mathbb N$ par $v_n=3^n\times n$. Déterminer le sens de variation de (v_n) .
- 3. On considère la suite (w_n) définie sur \mathbb{N} par $w_n = -n^2 + 6n$.
 - a. Étudier la monotonie de cette suite.
 - b. On a représenté, ci-contre, les 100 premiers termes de la suite (w_n) dans un repère. À partir de cette représentation graphique, conjecturer la limite de la suite (w_n) .



Exercice 2 (3 pts)

Soit (v_n) la suite définie pour tout n dans $\mathbb N$ par :

$$\begin{cases} v_0 = 3 \\ v_{n+1} = \frac{2v_n}{v_n^2 + 3} \end{cases}$$

- 1. Calculer v_1 et v_2 .
- 2. À l'aide de la calculatrice, déterminer une valeur approchée de v_{10} et v_{100} .
- 3. En déduire une conjecture sur la limite de la suite (v_n) .

Exercice 3 (2 pts)

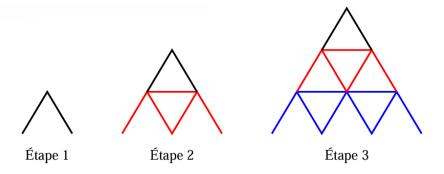
On considère le programme en langage Python ci-contre.

- 1. Qu'affiche cet algorithme s'il est appelé par terme (N)?
- 2. Donner l'expression de la suite (v_n) dont les termes sont affichés par cet algorithme.

```
def terme(N):
for i in range(0, N+1):
  v = i**2 + 2*i
  print(v)
```

Exercice 4 (2 pts)

On construit une succession de figures avec des allumettes. Voici les trois premières étapes :



Modéliser, à l'aide d'une suite, le nombre d'allumettes nécessaires à chaque étape.

Exercice 5 (5 pts)

Le directeur d'une réserve maritime a recensé 3 000 cétacés dans cette réserve au début de l'année 2017. Le classement de la zone en « réserve maritime » ne sera pas reconduit si le nombre de cétacés devient inférieur à 2 000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année, la réserve perd 5 % de son effectif par rapport à l'année d'avant mais elle accueille aussi 80 nouveaux cétacés.

Selon ce modèle, pour tout nombre n de \mathbb{N} , u_n désigne le nombre de cétacés au 1^{er} janvier de l'année 2017 + n. On a donc $u_0 = 3000$.

1. Justifier que $u_1 = 2930$.

- 2. Déterminer une relation de récurrence entre u_{n+1} et u_n .
- 3. Compléter l'algorithme suivant afin de déterminer l'année à partir de laquelle le nombre de cétacés dans la réserve sera strictement inférieur à 2 000.

4. À l'aide de votre calculatrice, retrouver la valeur trouvée avec l'algorithme précédent.