

Exercice 1

Soit f la fonction définie sur $D = \mathbb{R} \setminus \{-2\}$ par :

$$f(x) = \frac{x^2 + x - 1}{x + 2}$$

On note C_f sa courbe représentative et Δ la droite d'équation y = x - 1.

1. Limites aux bornes de D et interprétation graphique

L'ensemble de définition est $D=]-\infty, -2[\cup]-2, +\infty[$. Les bornes sont $-\infty$, -2 (par valeurs inférieures et supérieures), et $+\infty$.

Limite en $\pm \infty$: f(x) est une fonction rationnelle. Pour traiter la forme indéterminée de quotient de polynômes, on **factorise par le plus haut degré** :

$$f(x) = \frac{x^2 \left(1 + \frac{1}{x} - \frac{1}{x^2}\right)}{x \left(1 + \frac{2}{x}\right)} = x \frac{1 + \frac{1}{x} - \frac{1}{x^2}}{1 + \frac{2}{x}}.$$

Ainsi, lorsque $x \to \pm \infty$, les termes en $\frac{1}{x}$ et $\frac{1}{x^2}$ s'annulent :

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \text{et} \qquad \lim_{x \to -\infty} f(x) = -\infty.$$

Limite en -2: Étudions la limite du numérateur et du dénominateur lorsque x tend vers -2.

- Numérateur : $\lim_{x\to -2}(x^2+x-1)=(-2)^2+(-2)-1=4-2-1=1$.
- Dénominateur : $\lim_{x\to -2}(x+2)=0$.

Le numérateur tend vers 1 (positif) et le dénominateur tend vers 0. Il faut étudier le signe du dénominateur x+2:

- Si x > -2, alors x + 2 > 0. Donc $\lim_{x \to -2^+} (x + 2) = 0^+$.
- Si x<-2, alors x+2<0. Donc $\lim_{x\to -2^-}(x+2)=0^-$.

Par quotient des limites :

$$\lim_{x \to -2^+} f(x) = \frac{1}{0^+} = +\infty$$

$$\lim_{x\to -2^-} f(x) = \frac{1}{0^-} = -\infty$$

Interprétation graphique : Comme $\lim_{x\to -2} f(x) = \pm \infty$, on en déduit que la droite d'équation x=-2 est une asymptote verticale à la courbe C_f .

2. Décomposition de f(x)

On cherche trois réels a, b, c tels que pour tout $x \in D$:

$$f(x) = ax + b + \frac{c}{x+2}$$

Mettons l'expression de droite au même dénominateur :

$$ax + b + \frac{c}{x+2} = \frac{(ax+b)(x+2) + c}{x+2} = \frac{ax^2 + 2ax + bx + 2b + c}{x+2} = \frac{ax^2 + (2a+b)x + (2b+c)}{x+2}$$

On identifie les coefficients de ce numérateur avec ceux de $f(x)=\frac{1x^2+1x-1}{x+2}$:

$$\begin{cases} a = 1 \\ 2a + b = 1 \\ 2b + c = -1 \end{cases}$$

Résolvons ce système :

- a = 1.
- $2(1) + b = 1 \implies 2 + b = 1 \implies b = 1 2 = -1$.
- $2(-1) + c = -1 \implies -2 + c = -1 \implies c = -1 + 2 = 1$.

Donc, on a bien trouvé a=1, b=-1 et c=1. Pour tout $x\in D$:

$$f(x) = x - 1 + \frac{1}{x+2}$$

3. Étude de f(x) - (x - 1) et interprétation graphique

Calculons la différence f(x) - (x - 1) en utilisant la forme décomposée :

$$f(x) - (x - 1) = \left(x - 1 + \frac{1}{x + 2}\right) - (x - 1) = \frac{1}{x + 2}$$

Étudions la limite de cette différence en $\pm \infty$:

$$\lim_{x \to +\infty} [f(x) - (x-1)] = \lim_{x \to +\infty} \frac{1}{x+2} = 0$$

$$\lim_{x \to -\infty} [f(x) - (x - 1)] = \lim_{x \to -\infty} \frac{1}{x + 2} = 0$$

Interprétation graphique : Comme $\lim_{x\to\pm\infty}[f(x)-(x-1)]=0$, on en déduit que la droite Δ d'équation y=x-1 est une asymptote oblique à la courbe C_f en $+\infty$ et en $-\infty$.

4. Tableau de variation de f

Pour étudier les variations de f, calculons sa dérivée f'(x). Il est plus simple d'utiliser la forme décomposée $f(x) = x - 1 + \frac{1}{x+2}$.

$$f'(x) = \frac{d}{dx}(x) - \frac{d}{dx}(1) + \frac{d}{dx}\left(\frac{1}{x+2}\right)$$

Rappelons que la dérivée de $\frac{1}{u}$ est $-\frac{u'}{u^2}$. Ici u(x)=x+2, donc u'(x)=1.

$$f'(x) = 1 - 0 + \left(-\frac{1}{(x+2)^2}\right) = 1 - \frac{1}{(x+2)^2}$$

Mettons f'(x) au même dénominateur pour étudier son signe :

$$f'(x) = \frac{(x+2)^2 - 1}{(x+2)^2} = \frac{(x^2 + 4x + 4) - 1}{(x+2)^2} = \frac{x^2 + 4x + 3}{(x+2)^2}$$

Le signe de f'(x) dépend du signe du numérateur $N(x)=x^2+4x+3$, car le dénominateur $(x+2)^2$ est strictement positif sur D. Cherchons les racines de $N(x)=x^2+4x+3=0$. Le discriminant est $\Delta_N=b^2-4ac=4^2-4(1)(3)=16-12=4=2^2$. Les racines sont :

$$x_1 = \frac{-b - \sqrt{\Delta_N}}{2a} = \frac{-4 - 2}{2(1)} = \frac{-6}{2} = -3$$

$$x_2 = \frac{-b + \sqrt{\Delta_N}}{2a} = \frac{-4 + 2}{2(1)} = \frac{-2}{2} = -1$$

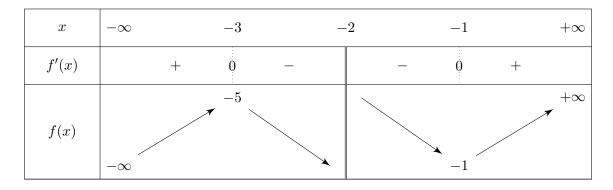
Le trinôme $x^2 + 4x + 3$ est positif à l'extérieur de ses racines (pour x < -3 ou x > -1) et négatif entre ses racines (pour -3 < x < -1).

Calculons les valeurs de f aux points où la dérivée s'annule (extremums locaux) :

•
$$f(-3) = -3 - 1 + \frac{1}{-3+2} = -4 + \frac{1}{-1} = -4 - 1 = -5$$
.

•
$$f(-1) = -1 - 1 + \frac{1}{-1+2} = -2 + \frac{1}{1} = -2 + 1 = -1$$
.

Dressons le tableau de variation complet :

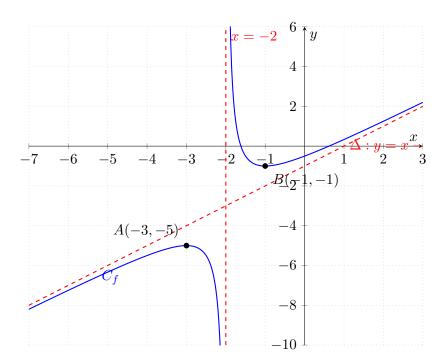


f admet un maximum local en x=-3 valant f(-3)=-5, et un minimum local en x=-1 valant f(-1)=-1.

5. Allure de la courbe C_f

On trace la courbe C_f dans un repère en utilisant les informations précédentes :

- Asymptote verticale x = -2.
- Asymptote oblique $\Delta : y = x 1$.
- Maximum local au point A(-3, -5).
- Minimum local au point B(-1, -1).
- Comportement suivant les variations du tableau.



Exercice 2

On considère la fonction f définie sur \mathbb{R} par $f(x)=(ax^2+bx+c)e^{-x}$. La courbe C_f et un tableau de variation (partiel) sont donnés.

1. Détermination de a, b et c

Nous utilisons les informations graphiques :

- Le point B(0,1) appartient à C_f . Cela signifie que f(0) = 1.
- Le point C(-1,0) appartient à C_f . Cela signifie que f(-1) = 0.
- La courbe C_f admet une tangente horizontale au point C d'abscisse x=-1 (la courbe "touche" l'axe des abscisses sans le traverser à ce point, ce qui est confirmé par f'(-1)=0 dans le tableau). Cela signifie que f'(-1)=0.

Traduisons ces informations en équations :

- $f(0) = (a(0)^2 + b(0) + c)e^{-0} = c \times 1 = c$. Donc, c = 1.
- $f(-1)=(a(-1)^2+b(-1)+c)e^{-(-1)}=(a-b+c)e^1$. Comme f(-1)=0 et $e^1\neq 0$, on doit avoir a-b+c=0.
- Calculons la dérivée f'(x). On utilise la règle de dérivation d'un produit (uv)' = u'v + uv' avec $u(x) = ax^2 + bx + c$ (donc u'(x) = 2ax + b) et $v(x) = e^{-x}$ (donc $v'(x) = -e^{-x}$).

$$f'(x) = (2ax + b)e^{-x} + (ax^2 + bx + c)(-e^{-x})$$
$$= e^{-x} [(2ax + b) - (ax^2 + bx + c)]$$
$$= e^{-x} [-ax^2 + (2a - b)x + (b - c)]$$

La condition f'(-1) = 0 donne:

$$e^{-(-1)} \left[-a(-1)^2 + (2a - b)(-1) + (b - c) \right] = 0$$
$$e^{1} \left[-a - (2a - b) + (b - c) \right] = 0$$

Comme $e \neq 0$, il faut que :

$$-a - 2a + b + b - c = 0 \implies -3a + 2b - c = 0$$

Nous avons le système suivant :

$$\begin{cases} c = 1 & (1) \\ a - b + c = 0 & (2) \\ -3a + 2b - c = 0 & (3) \end{cases}$$

En utilisant (1) dans (2): $a-b+1=0 \implies b=a+1$. En utilisant (1) et b=a+1 dans (3):

$$-3a + 2(a + 1) - 1 = 0$$

 $-3a + 2a + 2 - 1 = 0$
 $-a + 1 = 0 \implies a = 1$

En retournant à l'expression de b : b = a + 1 = 1 + 1 = 2.

Les coefficients sont donc a=1, b=2 et c=1. La fonction est :

$$f(x) = (x^2 + 2x + 1)e^{-x} = (x+1)^2 e^{-x}$$

2. Complétion du tableau de variation

Il faut déterminer le signe de f'(x) et les limites de f(x) aux bornes du domaine \mathbb{R} .

Signe de f'(x): Avec a=1,b=2,c=1, l'expression de la dérivée devient :

$$f'(x) = e^{-x} \left[-(1)x^2 + (2(1) - 2)x + (2 - 1) \right] = e^{-x} \left[-x^2 + 1 \right] = e^{-x} (1 - x^2)$$

Comme $e^{-x} > 0$ pour tout $x \in \mathbb{R}$, le signe de f'(x) est le même que celui de $1 - x^2 = (1 - x)(1 + x)$. Ce polynôme du second degré s'annule en x = 1 et x = -1. Il est positif entre ses racines (sur] - 1, 1[) et négatif à l'extérieur (sur $] - \infty$, -1[et]1, $+\infty$ [).

Limites:

• En $+\infty$: $f(x)=(x+1)^2e^{-x}$. C'est une forme indéterminée du type $\infty\times 0$. On utilise les croissances comparées : l'exponentielle e^x l'emporte sur tout polynôme en $+\infty$, donc e^{-x} l'emporte sur $(x+1)^2$ en tendant vers 0.

$$\lim_{x \to +\infty} f(x) = 0$$

• En $-\infty$: Posons X=-x. Si $x\to -\infty$, alors $X\to +\infty$.

$$f(x) = (x+1)^2 e^{-x} = (-X+1)^2 e^X = (X-1)^2 e^X$$

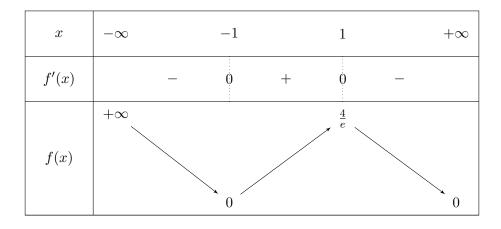
Lorsque $X \to +\infty$, $(X-1)^2 \to +\infty$ et $e^X \to +\infty$.

$$\lim_{x \to -\infty} f(x) = \lim_{X \to +\infty} (X - 1)^2 e^X = +\infty$$

Valeurs aux points critiques :

- $f(-1) = (-1+1)^2 e^{-(-1)} = 0^2 \times e^1 = 0.$
- $f(1) = (1+1)^2 e^{-1} = 2^2 e^{-1} = 4e^{-1} = \frac{4}{e}$.

Tableau de variation complet :



3. Position relative de C_f et de sa tangente en x=0 (Point B)

a. Équation de la tangente T_B en x=0

L'équation de la tangente à C_f au point d'abscisse $x_0 = 0$ est y = f'(0)(x - 0) + f(0).

- f(0) = 1 (d'après Q1).
- $f'(0) = e^{-0}(1 0^2) = 1 \times 1 = 1.$

L'équation de la tangente T_B est donc y = 1(x) + 1, soit y = x + 1.

b. Justification de l'étude du signe de $(x+1)\phi(x)$

Étudier la position relative de C_f par rapport à sa tangente T_B revient à étudier le signe de la différence $d(x) = f(x) - y_{T_B}$.

$$d(x) = f(x) - (x+1)$$

En utilisant l'expression $f(x) = (x+1)^2 e^{-x}$:

$$d(x) = (x+1)^2 e^{-x} - (x+1)$$

Factorisons par (x+1):

$$d(x) = (x+1) [(x+1)e^{-x} - 1]$$

En posant $\phi(x) = (x+1)e^{-x} - 1$, on a bien :

$$d(x) = (x+1)\phi(x)$$

Le problème revient donc bien à déterminer le signe de $(x+1)\phi(x)$.

c. Étude du signe de $\phi(x)$ et conclusion

Étudions la fonction $\phi(x) = (x+1)e^{-x} - 1$ sur \mathbb{R} . Calculons sa dérivée $\phi'(x)$:

$$\phi'(x) = \frac{d}{dx}(x+1) \times e^{-x} + (x+1) \times \frac{d}{dx}(e^{-x}) - \frac{d}{dx}(1)$$
$$\phi'(x) = 1 \times e^{-x} + (x+1) \times (-e^{-x}) - 0$$
$$\phi'(x) = e^{-x} - (x+1)e^{-x} = e^{-x}(1 - (x+1)) = e^{-x}(-x) = -xe^{-x}$$

Le signe de $\phi'(x)$ dépend de celui de -x, car $e^{-x} > 0$.

- Si x < 0, -x > 0, donc $\phi'(x) > 0$: ϕ est croissante.
- Si x > 0, -x < 0, donc $\phi'(x) < 0$: ϕ est décroissante.
- Si x = 0, $\phi'(x) = 0$.

La fonction ϕ admet donc un maximum global en x=0. Calculons ce maximum : $\phi(0)=(0+1)e^{-0}-1=1\times 1-1=0$. Comme le maximum de $\phi(x)$ est 0, atteint uniquement en x=0, on en déduit que :

- $\phi(x) < 0$ pour tout $x \neq 0$.
- $\phi(0) = 0$.

Dressons maintenant le tableau de signe de $d(x) = (x+1)\phi(x)$:

x	$-\infty$	-1		0	
Signe de $(x+1)$	_	0	+		
Signe de $\phi(x)$	_		_	0	
Signe de $d(x)$	+	0	_	0	
Position de C_f / T_B	C_f au-dessus	Point commun	C_f en dessous	Point commun (tangence)	C_f

Conclusion:

- Sur $]-\infty,-1$ [, d(x)>0, donc C_f est au-dessus de la tangente T_B .
- Sur $]-1,0[\cup]0,+\infty[$, d(x)<0, donc C_f est en dessous de la tangente T_B .
- En x = -1 et x = 0, d(x) = 0, les courbes se croisent. Le point B(0,1) est un point de tangence.