

Exercice 1

Soit f la fonction définie sur $D=\mathbb{R}\setminus\{-2\}$ par :

$$f(x) = \frac{x^2 + x - 1}{x + 2}$$

On note C_f la représentation graphique de f. La droite d'équation y=x-1 est notée Δ .

- 1. Étudier les limites de f aux bornes de son ensemble de définition. Que peut-on en déduire pour C_f ?
- 2. Démontrer qu'il existe trois réels a, b et c tels que, pour tout $x \in D$,

$$f(x) = ax + b + \frac{c}{x+2}$$

- 3. Étudier la limite de f(x)-(x-1) lorsque x tend vers $+\infty$ et $-\infty$. Que peut-on en déduire graphiquement?
- 4. Dresser le tableau de variation de f sur D.
- 5. Tracer l'allure de la courbe représentative ${\cal C}_f$ dans un repère du plan.

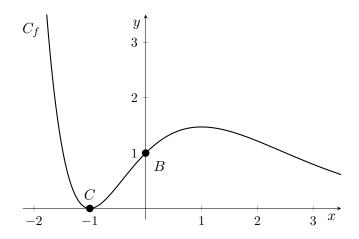
Exercice 2

On considère une fonction f définie sur $\mathbb R$ par :

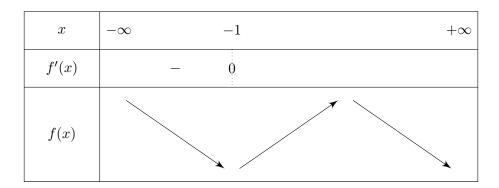
$$f(x) = (ax^2 + bx + c)e^{-x}$$

où a, b et c sont trois réels à déterminer.

Voici la courbe représentative C_f :



ainsi que le tableau de variation de f:



- 1. À l'aide des renseignements portés sur la figure (voir annexe), déterminer les nombres a,b et c.
- 2. Compléter le tableau de variation en justifiant vos réponses.
- 3. On souhaite étudier la position relative de la courbe C_f et de la tangente T en x=-1 à C_f .
 - (a) Donner l'équation de T.
 - (b) Justifier que ce problème revient à déterminer le signe de $(x+1)\phi(x)$ où $\phi(x)=(x+1)e^{-x}-1.$
 - (c) Étudier le signe de $\phi(x)$ et conclure.