

Exercice 1 - Corrigé

1. Équation $y' = 3x^2 - \frac{1}{x^2} \operatorname{sur} \mathbb{R}^*$

On cherche une fonction f telle que $f'(x)=3x^2-\frac{1}{x^2}$. Il faut trouver une primitive de $3x^2$ et une primitive de $-\frac{1}{x^2}$. Une primitive de $3x^2$ est x^3 . Une primitive de $-\frac{1}{x^2}$ (qui est $-x^{-2}$) est $\frac{1}{x}$ (car la dérivée de x^{-1} est $-x^{-2}$). Donc, les primitives sont de la forme $F(x)=x^3+\frac{1}{x}+C$, où C est une constante. Parmi les propositions, testons la c) : $f(x)=x^3+\frac{1}{x}-1$. Sa dérivée est $f'(x)=3x^2-\frac{1}{x^2}$. Cela correspond à l'équation (E). **Réponse : c)**

2. Équation 4y' - y = 0

On réécrit l'équation sous la forme standard y'=ay. $4y'=y\iff y'=\frac{1}{4}y$. C'est une équation différentielle linéaire homogène du premier ordre de la forme y'=ay avec $a=\frac{1}{4}$. Les solutions sont de la forme $f(x)=ke^{ax}$, où k est une constante réelle. Donc, les solutions sont $f(x)=ke^{\frac{1}{4}x}$, où $k\in\mathbb{R}$. **Réponse : a)**

3. Équation y' = 3y - 1

C'est une équation différentielle linéaire du premier ordre de la forme y'=ay+b avec a=3 et b=-1. Les solutions sont de la forme $f(x)=ke^{ax}-\frac{b}{a}$, où k est une constante réelle. On calcule $-\frac{b}{a}=-\frac{-1}{3}=\frac{1}{3}$. (C'est la solution particulière constante : si y=c, alors y'=0, donc $0=3c-1\implies c=1/3$). La solution générale est donc $f(x)=ke^{3x}+\frac{1}{3}$, où $k\in\mathbb{R}$. **Réponse : a)**

Exercice 2 - Corrigé

On a $\theta(t)$ la température en $^{\circ}C$ au temps t en minutes, $\theta(0)=80$, et $\theta'(t)=-0, 2(\theta(t)-M)$.

1. Cas M = 0

L'équation différentielle devient $\theta'(t)=-0,2\theta(t)$. C'est de la forme y'=ay avec a=-0,2. La solution générale est $\theta(t)=Ce^{-0,2t}$, où C est une constante réelle. On utilise la condition initiale $\theta(0)=80$ pour trouver C. $\theta(0)=Ce^{-0,2\times 0}=Ce^0=C$. Donc C=80. La solution unique vérifiant la condition initiale est $\theta(t)=80e^{-0,2t}$.

- 2. Cas M = 10
 - a) L'équation différentielle est $\theta'(t)=-0,2(\theta(t)-10)$. C'est de la forme y'=a(y-M) ou y'=ay+b en développant : $\theta'(t)=-0,2\theta(t)+2$. Ici, a=-0,2 et b=2. La solution générale est de la forme $\theta(t)=ke^{at}-\frac{b}{a}$. On calcule $-\frac{b}{a}=-\frac{2}{-0,2}=10$. (C'est la température ambiante M). Donc, la solution générale est $\theta(t)=ke^{-0,2t}+10$, où $k\in\mathbb{R}$. On utilise la condition initiale $\theta(0)=80$. $\theta(0)=ke^{-0,2\times0}+10=ke^0+10=k+10$. On a donc k+10=80, ce qui donne k=70. La solution unique est $\theta(t)=70e^{-0,2t}+10$.
 - b) Temps pour atteindre $40^{\circ}C$ On utilise la formule admise (qui est celle que l'on vient de trouver) : $\theta(t) = 70e^{-0.2t} + 10$.

On cherche t tel que $\theta(t) = 40$.

$$40 = 70e^{-0.2t} + 10$$

$$40 - 10 = 70e^{-0.2t}$$

$$30 = 70e^{-0.2t}$$

$$\frac{30}{70} = e^{-0.2t}$$

$$\frac{3}{7} = e^{-0.2t}$$

On applique la fonction logarithme népérien (In) des deux côtés :

$$\ln\left(\frac{3}{7}\right) = \ln(e^{-0.2t})$$

$$\ln\left(\frac{3}{7}\right) = -0.2t$$

$$t = \frac{\ln(3/7)}{-0.2}$$

$$t = -5\ln\left(\frac{3}{7}\right)$$

En utilisant la propriété $\ln(a/b) = -\ln(b/a)$, on a :

$$t = 5\ln\left(\frac{7}{3}\right)$$

C'est la valeur exacte du temps en minutes. Calculons une valeur approchée à l'aide de la calculatrice :

$$t \approx 5 \times 0.8473 \approx 4.236$$
 minutes

Pour convertir la partie décimale en secondes : $0.236 \times 60 \approx 14$ secondes. Il faut attendre environ **4 minutes et 14 secondes** pour que le café atteigne $40^{\circ}C$.

Exercice 3 - Corrigé

Soit
$$f(x) = (x^2 + 9x + 19)e^{-x-5}$$
 sur \mathbb{R} .

1. Calcul de la dérivée f'(x)

La fonction f est un produit de deux fonctions $u(x)=x^2+9x+19$ et $v(x)=e^{-x-5}$. Ces fonctions sont dérivables sur $\mathbb R$. Calculons leurs dérivées : u'(x)=2x+9. Pour $v(x)=e^{w(x)}$ avec w(x)=-x-5, on a w'(x)=-1. Donc $v'(x)=w'(x)e^{w(x)}=-1\cdot e^{-x-5}=-e^{-x-5}$.

On applique la formule de dérivation d'un produit (uv)' = u'v + uv':

$$f'(x) = (2x+9)(e^{-x-5}) + (x^2+9x+19)(-e^{-x-5})$$

$$= e^{-x-5} [(2x+9) - (x^2+9x+19)]$$

$$= e^{-x-5} [2x+9-x^2-9x-19]$$

$$= e^{-x-5} [-x^2-7x-10]$$

Factorisons le polynôme $-x^2-7x-10=-(x^2+7x+10)$. On cherche les racines de $x^2+7x+10=0$. Le discriminant est $\Delta=7^2-4(1)(10)=49-40=9=3^2$. Les racines sont $x_1=\frac{-7-3}{2}=-5$ et $x_2=\frac{-7+3}{2}=-2$. Donc, $x^2+7x+10=(x-(-5))(x-(-2))=(x+5)(x+2)$. Ainsi, $-x^2-7x-10=-(x+2)(x+5)$. Finalement, on obtient :

$$f'(x) = e^{-x-5}[-(x+2)(x+5)] = -(x+2)(x+5)e^{-x-5}$$

Ce qui est bien l'expression demandée.

2. Nombre de valeurs annulant f'(x)

On cherche les solutions de f'(x) = 0.

$$-(x+2)(x+5)e^{-x-5} = 0$$

Comme e^{-x-5} est une exponentielle, elle est toujours strictement positive ($e^{-x-5}>0$). L'équation est donc équivalente à :

$$-(x+2)(x+5) = 0$$

Un produit est nul si et seulement si l'un de ses facteurs est nul. Donc, x + 2 = 0 ou x + 5 = 0. Les solutions sont x = -2 et x = -5. Il y a donc **deux** valeurs qui annulent f'(x).

3. Tableau de variations de f

Pour étudier les variations de f, on étudie le signe de sa dérivée $f'(x) = -(x+2)(x+5)e^{-x-5}$. Comme $e^{-x-5} > 0$, le signe de f'(x) est le signe opposé de celui du polynôme (x+2)(x+5). Ce polynôme du second degré a pour racines -5 et -2. Il est positif à l'extérieur des racines et négatif entre les racines.

On peut maintenant dresser le tableau de variations. Calculons les valeurs aux points critiques :

$$f(-5) = ((-5)^2 + 9(-5) + 19)e^{-(-5)-5} = (25 - 45 + 19)e^0 = -1.$$

$$f(-2) = ((-2)^2 + 9(-2) + 19)e^{-(-2)-5} = (4 - 18 + 19)e^{2-5} = 5e^{-3}.$$

x	$-\infty$		-5		-2		$+\infty$
f'(x)		_	0	+	0	_	
f(x)	+∞		-1		$5e^{-3}$		~ ₀