

EXERCICE 1

Compétences de base

1. On étudie la fonction $f(x) = -3x^2 + 8x + 35$.

a. Résolution de f(x) = 0

On calcule le discriminant $\Delta=b^2-4ac=8^2-4(-3)(35)=64+420=484$. $\sqrt{\Delta}=\sqrt{484}=22$. Le discriminant est positif, il y a donc deux racines réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-8 - 22}{2(-3)} = \frac{-30}{-6} = 5$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-8 + 22}{2(-3)} = \frac{14}{-6} = -\frac{7}{3}$$

L'ensemble des solutions est $\boxed{\mathcal{S} = \left\{-\frac{7}{3}\,;\,5\right\}}$.

Interprétation graphique : Les solutions de l'équation f(x)=0 sont les abscisses des points d'intersection de la parabole \mathcal{C}_f avec l'axe des abscisses.

b. Tableau de signe

Le trinôme f(x) est du signe de a=-3 (négatif) à l'extérieur des racines et du signe opposé (positif) entre les racines.

x	$-\infty$		$-\frac{7}{3}$		5		$+\infty$
f(x)		_	0	+	0	_	

c. Résolution de f(x) < 0

D'après le tableau de signe, f(x) est strictement négatif lorsque x est à l'extérieur des racines.

$$\boxed{\mathcal{S} = \left] -\infty \, ; \, -\frac{7}{3} \left[\, \cup \, \right] 5 \, ; \, +\infty \left[\, \right]}$$

d. Forme factorisée

La forme factorisée est $f(x) = a(x - x_1)(x - x_2)$.

$$f(x) = -3\left(x - \left(-\frac{7}{3}\right)\right)(x - 5) = -3\left(x + \frac{7}{3}\right)(x - 5)$$

Pour une forme plus élégante, on peut distribuer le 3 :

$$f(x) = -(3x+7)(x-5)$$

2. On étudie la fonction $g(x) = -3x^2 + 12x - 5$.

a. Nature de l'extremum

Le coefficient du terme en x^2 est a=-3. Comme a<0, la parabole représentative \mathcal{C}_g est tournée vers le bas (concave). La fonction g admet donc un **maximum**.

b. Valeur de l'extremum

Ce maximum est atteint pour $x=\alpha=-\frac{b}{2a}=-\frac{12}{2(-3)}=2$. La valeur du maximum est $\beta=g(\alpha)=g(2)=-3(2)^2+12(2)-5=-12+24-5=7$.

La fonction g admet un maximum de 7, atteint en x=2.

3. Intersection de C_f et C_g

On résout l'équation
$$f(x) = g(x)$$
: $-3x^2 + 8x + 35 = -3x^2 + 12x - 5$

$$8x + 35 = 12x - 5$$

$$40 = 4x$$

$$x = 10.$$

L'équation n'ayant qu'une seule solution, les courbes ont un unique point d'intersection. On calcule son ordonnée : $y = g(10) = -3(10)^2 + 12(10) - 5 = -300 + 120 - 5 = -185$.

Le point d'intersection unique est I(10; -185).

4. a. Résolution de f(x) > g(x)

$$f(x)-g(x)>0$$
. D'après le calcul précédent, $f(x)-g(x)=-4x+40$. On résout donc $-4x+40>0\iff 40>4x\iff 10>x$.

$$\mathcal{S} =]-\infty; 10[$$

b. Interprétation graphique

Les solutions de l'inéquation f(x) > g(x) sont les abscisses des points pour lesquels la courbe C_f est située strictement au-dessus de la courbe C_g .

EXERCICE 2

Forme canonique

La forme canonique d'une fonction du second degré est $f(x) = a(x - \alpha)^2 + \beta$, où $S(\alpha; \beta)$ est le sommet de la parabole.

- 1. Par lecture graphique, on identifie le sommet S(1; 2). Donc $\alpha = 1$ et $\beta = 2$. L'expression est de la forme $f(x) = a(x-1)^2 + 2$.
- 2. Pour trouver a, on utilise un autre point de la courbe, par exemple l'origine (0; 0). On remplace x par 0 et f(x) par 0 : $0 = a(0-1)^2 + 2 \implies 0 = a(1) + 2 \implies a = -2$.

La forme canonique de la fonction est donc :

$$f(x) = -2(x-1)^2 + 2$$

EXERCICE 3 Rugby

La trajectoire est modélisée par $f(x)=x-\frac{x^2}{10}=-\frac{1}{10}x^2+x.$

1. Distance de retombée

Le ballon retombe au sol lorsque son altitude est nulle, soit f(x) = 0. $x - \frac{x^2}{10} = 0 \iff x\left(1 - \frac{x}{10}\right) = 0$. Les solutions sont x = 0 (point de départ) et $1 - \frac{x}{10} = 0 \iff x = 10$.

Le ballon retombera à 10 mètres du joueur.

2. Hauteur maximale

C'est un polynôme du second degré avec a=-1/10<0, donc la trajectoire a un maximum. Il est atteint pour $x=-\frac{b}{2a}=-\frac{1}{2(-1/10)}=\frac{1}{1/5}=5$. La hauteur maximale est $f(5)=5-\frac{5^2}{10}=5-\frac{25}{10}=5-2, 5=2,5$.

La hauteur maximale atteinte par le ballon est de 2,5 mètres.

3. Réussite de la pénalité

La ligne de but est à 5 mètres du joueur (x=5). La barre est à 3 mètres de hauteur. La pénalité est réussie si la hauteur du ballon à x=5 est supérieure à 3 mètres. D'après la question précédente, f(5)=2,5 m. Comme 2,5<3, le ballon passe sous la barre.

Non, la pénalité n'est pas réussie.

EXERCICE 4

Oubli regrettable

L'équation est $-2x^2+4x+c=0$. Pour qu'une équation du second degré ait une unique solution, son discriminant Δ doit être nul. $\Delta=b^2-4ac=4^2-4(-2)(c)=16+8c$. On résout $\Delta=0\iff 16+8c=0 \iff c=-16 \iff c=-2$.

$$c = -2$$

EXERCICE 5

Contrôle technique

1. Résolution de
$$x \le \frac{3}{x-2}$$

La valeur x=2 est une valeur interdite. On résout sur $\mathbb{R}\setminus\{2\}$. $x-\frac{3}{x-2}\leq 0\iff \frac{x(x-2)-3}{x-2}\leq 0\iff \frac{x^2-2x-3}{x-2}\leq 0$. On étudie le signe du numérateur $N(x)=x^2-2x-3$. $\Delta_N=(-2)^2-4(1)(-3)=16=4^2$. Racines : $x_1=\frac{2-4}{2}=-1$ et $x_2=\frac{2+4}{2}=3$. Le dénominateur D(x)=x-2 s'annule en 2.

x	$-\infty$		-1		2		3		$+\infty$
$x^2 - 2x - 3$		+	0	_		_	0	+	
x-2		_		_		_		+	
Quotient		_	0	+		_	0	+	

On cherche les intervalles où le quotient est négatif ou nul.

$$\boxed{\mathcal{S} =]-\infty; -1] \cup]2; 3]$$

2. Résolution de $2x^4 - 2x^2 - 24 = 0$

C'est une équation bicarrée. On pose le changement de variable $X=x^2$, avec la condition $X\geq 0$. L'équation devient $2X^2-2X-24=0$, ou en simplifiant par 2, $X^2-X-12=0$. $\Delta_X=(-1)^2-4(1)(-12)=1+48=49=7^2$. $X_1=\frac{1-7}{2}=-3$ et $X_2=\frac{1+7}{2}=4$. La solution $X_1=-3$ est rejetée car elle est négative. On conserve $X_2=4$. On revient à la variable $x:x^2=4\iff x=2$ ou x=-2.

$$\mathcal{S} = \{-2; 2\}$$

EXERCICE 6 Optimisation

Préliminaire : expression de f(x)

La fonction f est une fonction affine, car sa représentation est une droite. Son expression est de la forme f(x)=ax+b. Le point $B(0\,;\,3)$ est l'ordonnée à l'origine, donc b=3. La droite passe par $A(\frac{3}{2}\,;\,0)$, donc $f(\frac{3}{2})=0\iff a\left(\frac{3}{2}\right)+3=0\iff \frac{3}{2}a=-3\iff a=-2$. L'expression de la fonction est donc f(x)=-2x+3.

1. Aire maximale du rectangle OCMD

Le point M a pour coordonnées $(x\,;\,f(x))$, soit $(x\,;\,-2x\,+\,3)$. Pour que le rectangle soit dans le premier quadrant, on doit avoir $x\,\geq\,0$ et $f(x)\,\geq\,0$, soit $-2x\,+\,3\,\geq\,0$ $\iff x\,\leq\,\frac{3}{2}$. Le domaine d'étude est donc $x\,\in\,[0\,;\,\frac{3}{2}]$. L'aire du rectangle OCMD est $\mathcal{A}(x)\,=\,OC\,\times\,OD\,=\,x\,\times\,f(x)\,=\,x(-2x\,+\,3)\,=\,-2x^2\,+\,3x$. La fonction $\mathcal{A}(x)$ est un polynôme du second degré avec un coefficient $a\,=\,-2\,<\,0$. Elle admet donc un maximum. Ce maximum est atteint pour $x\,=\,-\frac{b}{2a}\,=\,-\frac{3}{2(-2)}\,=\,\frac{3}{4}$. Cette valeur est bien dans l'intervalle $[0\,;\,\frac{3}{2}]$.

L'aire du rectangle est maximale pour
$$x = \frac{3}{4}$$
.

2. Comparaison des aires

L'aire du triangle OAB, rectangle en O, est $\mathcal{A}_{OAB} = \frac{OA \times OB}{2} = \frac{\frac{3}{2} \times 3}{2} = \frac{9/2}{2} = \frac{9}{4}$. La moitié de

cette aire est $\frac{1}{2}\mathcal{A}_{OAB}=\frac{9}{8}$. On cherche à savoir s'il existe x tel que $\mathcal{A}(x)=\frac{9}{8}$. $-2x^2+3x=\frac{9}{8}\iff -2x^2+3x-\frac{9}{8}=0$. On calcule le discriminant : $\Delta=3^2-4(-2)\left(-\frac{9}{8}\right)=9-8\left(\frac{9}{8}\right)=9-9=0$. Comme $\Delta=0$, il existe une unique solution : $x=-\frac{b}{2a}=\frac{3}{4}$.

Oui, c'est possible pour
$$x = \frac{3}{4}$$
.

(C'est la position où l'aire du rectangle est maximale).