

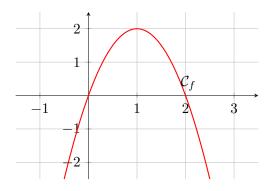
EXERCICE 1

Compétences de base - 30 min - 7 points

1. Dans cette question on donne:

$$f(x) = -3x^2 + 8x + 35$$

- a. Résoudre l'équation f(x)=0. Comment s'interprète graphiquement le résultat trouvé?
- b. Dresser le tableau de signe de f(x).
- c. Résoudre l'inéquation f(x) < 0.
- d. Donner la forme factorisée de f(x).
- 2. Dans cette question on donne:


$$g(x) = -3x^2 + 12x - 5$$

- a. g admet-elle un maximum ou un minimum? Justifier.
- b. Donner la valeur de cet extrémum et préciser pour quelle valeur de x il est atteint.
- 3. Démontrer que C_f et C_g ont un unique point d'intersection dont on calculera les coordonnées.
- 4. a. Résoudre l'inéquation f(x) > g(x).
 - b. Interpréter graphiquement les solutions trouvées.

EXERCICE 2

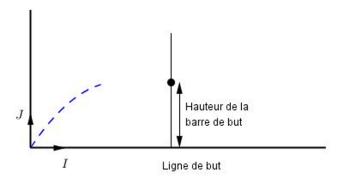
Forme canonique – 10 min – 2 points

On donne ci-dessous la parabole représentative d'une fonction f.

ightarrow Donner la forme canonique de f.

EXERCICE 3

Rugby - 15 min - 4 points


Un joueur de rugby doit réussir une pénalité, c'est à dire envoyer le ballon au-dessus d'une barre située entre deux poteaux de buts, situés sur la ligne de but.

Cette barre est située à 3 mètres du sol et le joueur se trouve au milieu du terrain, à 5 mètres en face des poteaux.

La trajectoire du ballon est modélisée par la courbe d'une fonction f qui, dans le repère (O,I,J) est définie par :

$$f(x) = x - \frac{x^2}{10}$$

- L'origine du repère est l'endroit où se trouve le joueur (départ de la trajectoire).
- x désigne la distance au sol entre le ballon et son point de départ.
- f(x) désigne l'altitude du ballon en fonction de x.

Avec cette modélisation:

- 1. À quelle distance du joueur le ballon retombera-t-il?
- 2. Quelle sera la hauteur maximale atteinte par le ballon?
- 3. La pénalité sera-t-elle réussie?

Toutes les réponses seront justifiées par le calcul.

EXERCICE 4

Oubli regrettable - 5 min - 1 point

Esther, pressée de sortir du cours de maths, n'a pas fini de recopier l'équation à résoudre pour le prochain cours :

$$-2x^2 + 4x + c = 0$$

(II lui manque la valeur de c...)

Effondrée de ne pouvoir faire son travail, elle se souvient que le professeur avait annoncé que cette équation avait une unique solution...

 \rightarrow Déterminer la valeur de c.

EXERCICE 5

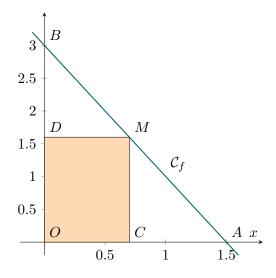
Contrôle technique - 10 min - 3 points

1. Résoudre l'inéquation suivante :

$$x \le \frac{3}{x-2}$$

2. Résoudre l'équation suivante :

$$2x^4 - 2x^2 - 24 = 0$$


EXERCICE 6

Optimisation - 15 min - 3 points

Dans cet exercice, toute trace de réflexion sera prise en compte dans l'évaluation.

On considère:

- La droite représentative d'une fonction f dans un repère du plan passant par $A\left(\frac{3}{2}\,;\,0\right)$ et $B(0\,;\,3)$.
- M le point de C_f d'abscisse x.
- C le point de l'axe des abscisses d'abscisse x.
- D le point de l'axe des ordonnées d'ordonnée f(x).
- 1. Déterminer x pour que l'aire du rectangle OCMD soit maximale.
- 2. Est-il possible que l'aire du rectangle OCMD soit égale à la moitié de l'aire du triangle OAB?
- \rightarrow On pourra chercher à déterminer l'expression de f(x)....

