

Exercice 1 : Techniques élémentaires

1. Equation et inéquation :

a) Résolution de $4(-2x-5) < x^2(-2x-5)$

On regroupe tous les termes du même côté pour comparer à zéro : $4(-2x-5)-x^2(-2x-5)<0$

On factorise par le facteur commun (-2x-5): $(-2x-5)(4-x^2)<0$

On reconnaît une identité remarquable $4-x^2=(2-x)(2+x)$. L'inéquation devient : (-2x-5)(2-x)(2+x)<0

On étudie le signe de ce produit à l'aide d'un tableau de signes. Les racines des facteurs sont : $-2x-5=0 \iff x=-\frac{5}{2}$, $2-x=0 \iff x=2$, $2+x=0 \iff x=-2$.

x	$-\infty$		$-\frac{5}{2}$		-2		2		$+\infty$
-2x - 5		+	0	_		_		_	
2-x		+		+		+	0	_	
2+x		_		_	0	+		+	
Produit		+	0	_	0	+	0	_	

On cherche les intervalles où le produit est strictement négatif.

$$\boxed{\mathcal{S} = \left] -\frac{5}{2}; -2 \left[\cup \right] 2; +\infty \left[\right]}$$

b) Résolution de $\frac{5}{-4x+2} = \frac{7}{3x-1}$

D'abord, on détermine les valeurs interdites pour que les dénominateurs ne soient pas nuls : $-4x+2\neq 0\iff x\neq \frac{1}{2}$ et $3x-1\neq 0\iff x\neq \frac{1}{3}$. L'ensemble de définition est $\mathcal{D}=\mathbb{R}\setminus\{\frac{1}{3},\frac{1}{2}\}$. Sur \mathcal{D} , on peut utiliser le produit en croix : 5(3x-1)=7(-4x+2) 15x-5=-28x+14 15x+28x=14+5 43x=19 $x=\frac{19}{43}$

Cette valeur n'est pas une valeur interdite.

$$\mathcal{S} = \left\{ \frac{19}{43} \right\}$$

2. Le second degré:

a) Formes de $f(x) = -2x^2 + 8x + 42$

Forme factorisée : On cherche les racines en résolvant f(x) = 0. $\Delta = b^2 - 4ac = 8^2 - 4(-2)(42) = 64 + 336 = 400 = 20^2$. $x_1 = \frac{-8 - 20}{2(-2)} = \frac{-28}{-4} = 7$ et $x_2 = \frac{-8 + 20}{2(-2)} = \frac{12}{-4} = -3$. La forme factorisée est $a(x - x_1)(x - x_2)$.

$$f(x) = -2(x-7)(x+3)$$

Forme canonique: On part de $f(x) = -2(x^2 - 4x) + 42$. $f(x) = -2[(x-2)^2 - 4] + 42 = -2(x-2)^2 + 8 + 42$.

$$f(x) = -2(x-2)^2 + 50$$

b) **Résolution de** $5x^2 - 49x = 10$

On résout $5x^2 - 49x - 10 = 0$. $\Delta = (-49)^2 - 4(5)(-10) = 2401 + 200 = 2601 = 51^2$. $x_1 = \frac{49 - 51}{2(5)} = \frac{-2}{10} = -\frac{1}{5}$ et $x_2 = \frac{49 + 51}{2(5)} = \frac{100}{10} = 10$.

$$\boxed{\mathcal{S} = \left\{ -\frac{1}{5} \,;\, 10 \right\}}$$

c) Résolution de $-3x^2 \le 7x + 10$ et $2x^2 - 26x + 44 > 0$

Première inéquation : $-3x^2-7x-10 \le 0$. $\Delta = (-7)^2-4(-3)(-10) = 49-120 = -71$. $\Delta < 0$, donc le trinôme est toujours du signe de a=-3, c'est-à-dire toujours négatif. L'inéquation est donc toujours vérifiée. $\mathcal{S}_1 = \mathbb{R}$.

 $\frac{\text{Deuxième inéquation}: }{\Delta = (-13)^2 - 4(1)(22)} = 169 - 88 = 81 = 9^2. \text{ Les racines sont } x_1 = \frac{13 - 9}{2} = 2 \text{ et } x_2 = \frac{13 + 9}{2} = 11. \text{ Le trinôme est du signe de } a = 1 \text{ (positif) à l'extérieur des racines.} \\ \mathcal{S}_2 =]-\infty; \ 2[\cup]11; +\infty[.$

La solution finale est l'intersection $S = S_1 \cap S_2$.

$$\boxed{\mathcal{S} =] - \infty \, ; \, 2[\cup]11 \, ; \, +\infty[}$$

d) Tableau de variation de $f(x) = -3x^2 + 3x + \frac{1}{4}$

Le coefficient a=-3 est négatif, la parabole est donc tournée vers le bas. La fonction est croissante puis décroissante. L'abscisse du sommet est $\alpha=-\frac{b}{2a}=-\frac{3}{2(-3)}=\frac{1}{2}$. L'ordonnée du sommet est $\beta=f(\frac{1}{2})=-3(\frac{1}{2})^2+3(\frac{1}{2})+\frac{1}{4}=-3(\frac{1}{4})+\frac{3}{2}+\frac{1}{4}=-\frac{3}{4}+\frac{6}{4}+\frac{1}{4}=\frac{4}{4}=1$.

x	$-\infty$	$\frac{1}{2}$	$+\infty$
f(x)		1	

e) Racines de $f(x) = 3x^2 + x - 2$

On teste des valeurs simples : f(1)=3+1-2=2, f(-1)=3-1-2=0. Donc $x_1=-1$ est une racine évidente. Le produit des racines $P=x_1\cdot x_2=\frac{c}{a}=\frac{-2}{3}$. Donc $(-1)\cdot x_2=-\frac{2}{3}$, d'où $x_2=\frac{2}{3}$.

f) Déterminer un polynôme

Les racines sont 5 et -4, donc la forme factorisée est f(x) = a(x-5)(x-(-4)) = a(x-5)(x-(-4))

5)(x+4). On utilise la condition f(0)=3. f(0)=a(0-5)(0+4)=a(-20)=-20a. $-20a=3\iff a=-\frac{3}{20}$.

$$f(x) = -\frac{3}{20}(x-5)(x+4)$$

g) Équation paramétrique $mx^2 - 6x + m = 0$

Pour que l'équation soit du second degré et admette deux solutions (distinctes), il faut deux conditions :

- i. Le coefficient de x^2 ne doit pas être nul : $m \neq 0$.
- ii. Le discriminant Δ doit être strictement positif.

 $\Delta = (-6)^2 - 4(m)(m) = 36 - 4m^2$. On résout $\Delta > 0 \iff 36 - 4m^2 > 0 \iff 36 > 4m^2 \iff 9 > m^2$. L'inéquation $m^2 < 9$ est équivalente à -3 < m < 3. En combinant les deux conditions, m doit être dans]-3; 3[tout en étant non nul.

$$m \in]-3; 0[\cup]0; 3[$$

Exercice 2 : À partir de la courbe ...

1. Signes de a et Δ

La parabole est tournée vers le bas (concave), donc le coefficient directeur a < 0. La courbe coupe l'axe des abscisses en deux points distincts (B et C), donc l'équation f(x) = 0 a deux solutions distinctes, ce qui signifie que le discriminant $\Delta > 0$.

2. Forme canonique et factorisée

Par lecture graphique, on identifie:

- Le sommet A(-2; 3).
- Les racines (points d'intersection avec l'axe des abscisses) B(-3; 0) et C(-1; 0).

Forme canonique : $f(x) = a(x-\alpha)^2 + \beta$. Avec $(\alpha,\beta) = (-2,3)$, on a $f(x) = a(x+2)^2 + 3$. Forme factorisée : $f(x) = a(x-x_1)(x-x_2)$. Avec $x_1 = -3$ et $x_2 = -1$, on a f(x) = a(x+3)(x+1). Pour trouver a, utilisons le point A(-2,3) dans la forme factorisée : f(-2) = a(-2+3)(-2+1) = a(1)(-1) = -a. Or, f(-2) = 3, donc $-a = 3 \iff a = -3$. Les expressions sont donc :

Forme canonique :
$$\boxed{f(x) = -3(x+2)^2 + 3}$$
 Forme factorisée :
$$\boxed{f(x) = -3(x+3)(x+1)}$$

3. Discussion du nombre de solutions de f(x) = k

Le nombre de solutions de l'équation f(x)=k correspond au nombre de points d'intersection entre la parabole représentant f et la droite horizontale d'équation y=k. Graphiquement, on observe :

- Si k > 3: La droite est au-dessus du sommet A. Il n'y a **aucune solution**.
- Si k=3: La droite touche le sommet. Il y a une unique solution (x=-2).
- Si k < 3: La droite coupe la parabole en deux points. Il y a **deux solutions distinctes**.

Exercice 3

On veut démontrer que pour tout $x \neq 1$, $1+x+x^2+x^3=\frac{1-x^4}{1-x}$. Soit $S=1+x+x^2+x^3$. Multiplions S par (1-x):

$$(1-x) \times S = (1-x)(1+x+x^2+x^3)$$

$$= 1 \times (1+x+x^2+x^3) - x \times (1+x+x^2+x^3)$$

$$= (1+x+x^2+x^3) - (x+x^2+x^3+x^4)$$

$$= 1+x+x^2+x^3-x-x^2-x^3-x^4$$

$$= 1-x^4$$

On a donc $(1-x)S=1-x^4$. Comme on a supposé que $x\neq 1$, alors $1-x\neq 0$, et on peut diviser les deux membres de l'égalité par (1-x) : $S=\frac{1-x^4}{1-x}$. Ceci démontre bien que pour tout réel $x\neq 1$:

$$1 + x + x^2 + x^3 = \frac{1 - x^4}{1 - x}$$