

Exercice 1:

Soit les fonctions f et g définies et dérivables sur \mathbb{R} .

Déterminer f'(x) et g'(x) sachant que

$$f(x) = \ln(e^x + e^{2x})$$

$$g(x) = \ln\left(\frac{1}{x^4} + \frac{1}{x^2}\right)$$

Exercice 2:

1. Résoudre les inéquations et équation suivantes :

(a)
$$-x^2 + 8x + 9 < 0$$
.

(b)
$$\ln(x+1) - \ln(-4x-4) + \ln(5-x) = 0.$$

(c)
$$8 \ln x + 9 < (\ln x)^2$$
.

(d)
$$\ln((x-3)^2) < \ln(x+9) + \ln 2$$
.

(e)
$$2\ln(x-3) < \ln(x+9) + \ln 2$$
.

- 2. Déterminer l'ensemble des entiers naturels vérifiant l'inéquation suivante : $\left(\frac{7}{8}\right)^n < 0.01$.
- 3. Déterminer l'ensemble des entiers naturels vérifiant l'inéquation suivante : $5^{n+2} < 20000$.

Exercice 3:

Déterminer les limites suivantes :

$$1. \lim_{x \to +\infty} x - \ln(x)$$

$$2. \lim_{x \to 0} \frac{\ln(1 + \sin(x))}{x}$$

3.
$$\lim_{x \to 0^+} \sqrt{x} \ln(x)$$

Exercice 4:

Le but de ce problème est d'étudier dans la partie A la fonction numérique f définie sur $]0\,;\,+\infty[$ par $f(x)=x+\frac{1}{x}+\frac{\ln(x)}{x^2}$ et de déterminer ensuite dans la partie B la position de sa courbe représentative par rapport à son asymptote oblique.

Partie A

- 1. Soit g la fonction numérique définie sur]0; $+\infty[$ par : $g(x)=x^3-x-2\ln x+1.$
 - (a) Montrer que la fonction g est dérivable et que, pour tout $x \in]0$; $+\infty[$, $g'(x) = \frac{(x-1)(3x^2+3x+2)}{x}$.
 - (b) Étudier les variations de la fonction g puis déterminer le signe de g(x).
- 2. (a) Déterminer les limites de f en 0 et en $+\infty$.
 - (b) Montrer que, pour tout $x \in]0$; $+\infty[$, $f'(x) = \frac{g(x)}{x^3}$ puis donner le tableau de variations de f.

Partie B

 (C_f) désigne la représentation graphique de la fonction f dans un repère orthonormé $(O\,;\,i\,,\,j)$ unité graphique 2 cm.

- 1. Soit h la fonction définie sur]0; $+\infty[$ par $h(x)=x+\ln(x)$.
 - (a) Dresser le tableau de variation de h, puis montrer que l'équation h(x)=0 admet une solution unique α sur l'intervalle $[0,4\ ;\ 0,7]$.
 - (b) Montrer que l'on a : $e^{-\alpha} = \alpha$.
- 2. (a) Vérifier que la droite (Δ) d'équation y=x est asymptote oblique à (C_f) en $+\infty$.
 - (b) Utiliser les résultats de la question 1.a pour déterminer les positions relatives de (C_f) et (Δ) .
- 3. Construire (C_f) et (Δ) dans le repère orthonormé $(O\,;\,i\,,\,j)$.