

Exercice 1

1. Calcul de la dérivée de $f(x) = (x^2 - 3x + 7)^5$

On utilise la formule de dérivation des fonctions composées $(u^n)' = n \times u' \times u^{n-1}$.

Ainsi, pour tout $x \in \mathbb{R}$:

$$f'(x) = 5 \times (2x - 3) \times (x^2 - 3x + 7)^{5-1}$$
$$f'(x) = 5(2x - 3)(x^2 - 3x + 7)^4$$

2. Calcul de la dérivée de $g(x) = \frac{1}{(x^2+5)^3}$

On peut écrire $g(x)=(x^2+5)^{-3}$. g est de la forme u^n avec $u(x)=x^2+5$ et n=-3. La fonction u est dérivable sur $\mathbb R$ et sa dérivée est u'(x)=2x.

On utilise la même formule $(u^n)' = n \times u' \times u^{n-1}$.

Ainsi, pour tout $x \in \mathbb{R}$:

$$g'(x) = -3 \times (2x) \times (x^2 + 5)^{-3-1}$$
$$g'(x) = -6x(x^2 + 5)^{-4}$$

En revenant à une écriture fractionnaire :

$$g'(x) = -\frac{6x}{(x^2 + 5)^4}$$

3. Calcul de la dérivée de $h(x) = xe^{\frac{1}{x}}$

h est de la forme u(x)v(x) avec u(x)=x et $v(x)=e^{\frac{1}{x}}$. On a u'(x)=1.

Pour dériver $v(x)=e^{\frac{1}{x}}$, on utilise la formule de dérivation de e^w qui est $w'e^w$. Ici, $w(x)=\frac{1}{x}=x^{-1}$. Sa dérivée est $w'(x)=-1\cdot x^{-1-1}=-x^{-2}=-\frac{1}{r^2}$. Donc, $v'(x)=-\frac{1}{r^2}e^{\frac{1}{x}}$.

On utilise la formule de dérivation d'un produit (uv)' = u'v + uv'.

Ainsi, pour tout $x \in \mathbb{R}^*$:

$$h'(x) = (1) \times \left(e^{\frac{1}{x}}\right) + (x) \times \left(-\frac{1}{x^2}e^{\frac{1}{x}}\right)$$
$$h'(x) = e^{\frac{1}{x}} - \frac{x}{x^2}e^{\frac{1}{x}}$$
$$h'(x) = e^{\frac{1}{x}} - \frac{1}{x}e^{\frac{1}{x}}$$

On factorise par $e^{\frac{1}{x}}$ pour obtenir une forme plus simple :

$$h'(x) = e^{\frac{1}{x}} \left(1 - \frac{1}{x} \right)$$

Exercice 2

On considère la fonction g définie sur [-4;4] par $g(x)=-x^3+3x^2-1$. On note g sa courbe représentative.

1. Variations de g sur [-4; 4]

La fonction g est une fonction polynôme, elle est donc dérivable sur \mathbb{R} , et en particulier sur $[-4\,;\,4]$. Calculons sa dérivée :

$$g'(x) = -3x^2 + 3 \times 2x - 0 = -3x^2 + 6x$$

Étudions le signe de g'(x). C'est un polynôme du second degré. Cherchons ses racines :

$$g'(x) = 0 \iff -3x^2 + 6x = 0 \iff -3x(x-2) = 0$$

Les racines sont x=0 et x=2. Ces deux racines sont dans l'intervalle [-4;4]. Le coefficient dominant de g'(x) est -3, qui est négatif. La parabole représentant g'(x) est donc tournée vers le bas. Ainsi, g'(x) est négatif à l'extérieur des racines et positif entre les racines.

Calculons les valeurs aux bornes et aux points critiques :

•
$$g(-4) = -(-4)^3 + 3(-4)^2 - 1 = -(-64) + 3(16) - 1 = 64 + 48 - 1 = 111$$

•
$$g(0) = -(0)^3 + 3(0)^2 - 1 = -1$$

•
$$g(2) = -(2)^3 + 3(2)^2 - 1 = -8 + 3(4) - 1 = -8 + 12 - 1 = 3$$

•
$$g(4) = -(4)^3 + 3(4)^2 - 1 = -64 + 3(16) - 1 = -64 + 48 - 1 = -17$$

x	-4	0	2	4
g'(x)	_	0 -	+ 0	_
g(x)	111	-1	3	-17

2. Équation de la tangente à g au point d'abscisse 1

L'équation de la tangente à g au point d'abscisse a est donnée par la formule : y=g'(a)(x-a)+g(a). Ici, a=1. Calculons g(1) et g'(1) :

•
$$g(1) = -(1)^3 + 3(1)^2 - 1 = -1 + 3 - 1 = 1$$

•
$$g'(1) = -3(1)^2 + 6(1) = -3 + 6 = 3$$

L'équation de la tangente est donc :

$$y = 3(x-1) + 1$$

$$y = 3x - 3 + 1$$

$$y = 3x - 2$$

3. Convexité de g et point d'inflexion

La convexité de g est déterminée par le signe de sa dérivée seconde g''(x). g est une fonction polynôme, elle est donc deux fois dérivable sur \mathbb{R} . Calculons g''(x) en dérivant $g'(x) = -3x^2 + 6x$:

$$q''(x) = -3 \times 2x + 6 = -6x + 6$$

Étudions le signe de g''(x) :

$$g''(x) = 0 \iff -6x + 6 = 0 \iff 6 = 6x \iff x = 1$$

Comme le coefficient directeur de g''(x) (qui est une fonction affine) est -6 < 0, la fonction g''(x) est positive avant x = 1 et négative après x = 1.

x	-4	1	4
g''(x)		+ 0 -	
Convexité de g		$Convexe\ Pt.infl.\ Concave$	

La fonction g est convexe sur $[-4\,;\,1]$ et concave sur $[1\,;\,4]$. La dérivée seconde g''(x) s'annule et change de signe en x=1. Donc, la courbe g admet un point d'inflexion au point d'abscisse x=1. L'ordonnée de ce point est g(1)=1. Le point d'inflexion a pour coordonnées $\boxed{(1\,;\,1)}$.

4. Signe de la fonction h(x) = g(x) - (3x - 2)

On reconnaît dans l'expression 3x-2 l'équation de la tangente T à g au point d'abscisse 1, trouvée à la question 2. Ainsi, $h(x)=g(x)-y_T$, où $y_T=3x-2$. Le signe de h(x) correspond donc à la position relative de la courbe g par rapport à sa tangente T au point d'abscisse 1 (qui est aussi le point d'inflexion).

Le signe de h(x) est lié à la convexité de g par rapport à sa tangente au point d'inflexion :

- Sur [-4; 1], g est convexe, donc g est au-dessus de ses tangentes (sauf au point de tangence). En particulier, pour $x \neq 1$, g(x) > 3x 2. Donc $h(x) \geq 0$ sur [-4; 1] (avec égalité seulement en x = 1).
- Sur $[1\,;\,4]$, g est concave, donc g est en-dessous de ses tangentes (sauf au point de tangence). En particulier, pour $x\neq 1$, g(x)<3x-2. Donc $h(x)\leq 0$ sur $[1\,;\,4]$ (avec égalité seulement en x=1).

La fonction h(x) s'annule uniquement en x = 1.

Exercice 3

Soit f la fonction définie sur $\mathbb R$ par $f(x)=10x^2e^{ax-1}$ où $a\in\mathbb R$. On note f sa courbe représentative. On s'intéresse aux points d'inflexion de f.

La fonction f est le produit d'une fonction polynôme ($x\mapsto 10x^2$) et d'une fonction exponentielle composée avec une fonction affine ($x\mapsto e^{ax-1}$). Ces fonctions sont indéfiniment dérivables sur $\mathbb R$. Donc f est indéfiniment dérivable sur $\mathbb R$.

Les points d'inflexion sont les points où la dérivée seconde f''(x) s'annule en changeant de signe. Calculons f'(x) et f''(x).

Calcul de f'(x) (règle du produit (uv)' = u'v + uv'): Soit $u(x) = 10x^2$ et $v(x) = e^{ax-1}$. Alors u'(x) = 20x et $v'(x) = ae^{ax-1}$.

$$f'(x) = (20x)(e^{ax-1}) + (10x^2)(ae^{ax-1})$$
$$= 10xe^{ax-1}(2+ax)$$

Calcul de f''(x) (règle du produit (UV)' = U'V + UV' avec $U(x) = 10x(2 + ax) = 20x + 10ax^2$ et $V(x) = e^{ax-1}$): U'(x) = 20 + 20ax. $V'(x) = ae^{ax-1}$.

$$f''(x) = (20 + 20ax)(e^{ax-1}) + (20x + 10ax^{2})(ae^{ax-1})$$

$$= e^{ax-1}[(20 + 20ax) + a(20x + 10ax^{2})]$$

$$= e^{ax-1}[20 + 20ax + 20ax + 10a^{2}x^{2}]$$

$$= e^{ax-1}[10a^{2}x^{2} + 40ax + 20]$$

$$= 10e^{ax-1}[a^{2}x^{2} + 4ax + 2]$$

Le signe de f''(x) dépend du signe du polynôme du second degré $P(x) = a^2x^2 + 4ax + 2$, car $10e^{ax-1}$ est toujours strictement positif (l'exponentielle est toujours positive).

1. Cas où $a \neq 0$

On étudie le signe du polynôme $P(x)=a^2x^2+4ax+2$. C'est un polynôme du second degré en x. Son coefficient dominant est a^2 . Comme $a\neq 0$, $a^2>0$. Calculons son discriminant Δ :

$$\Delta = (4a)^2 - 4(a^2)(2) = 16a^2 - 8a^2 = 8a^2$$

Puisque $a \neq 0$, on a $a^2 > 0$, et donc $\Delta = 8a^2 > 0$.

Le polynôme P(x) a donc deux racines réelles distinctes. Notons-les x_1 et x_2 . Comme P(x) est un polynôme du second degré avec un discriminant strictement positif et un coefficient dominant (a^2) positif, P(x) est positif à l'extérieur des racines et négatif entre les racines. Puisque le signe de f''(x) est le même que celui de P(x), f''(x) s'annule et change de signe en x_1 et en x_2 .

Par conséquent, la courbe f admet exactement deux points d'inflexion lorsque $a \neq 0$.

2. **Cas où** a = 0

Si a=0, l'expression de la fonction f devient :

$$f(x) = 10x^2e^{0 \cdot x - 1} = 10x^2e^{-1} = \frac{10}{e}x^2$$

C'est une fonction polynôme du second degré (une parabole). Calculons sa dérivée seconde :

$$f'(x) = \frac{10}{e}(2x) = \frac{20}{e}x$$

$$f''(x) = \frac{20}{e}$$

Comme $e \approx 2.718 > 0$, la dérivée seconde $f''(x) = \frac{20}{e}$ est une constante strictement positive. f''(x) ne s'annule jamais et est toujours positive.

La fonction f est donc strictement convexe sur \mathbb{R} . Il n'y a pas de changement de signe de f''(x), donc la courbe f n'admet aucun point d'inflexion lorsque a=0.

Exercice 4

Soit f la fonction définie par $f(x)=(2-x)\sqrt{4-x^2}$ et (C) sa courbe représentative.

1. Ensemble de définition de f

La fonction f est définie si et seulement si l'expression sous la racine carrée est positive ou nulle. Condition : $4-x^2 \geq 0$. Étudions le signe du polynôme $P(x)=4-x^2$. Les racines sont x=-2 et x=2. Le coefficient de x^2 est -1<0, la parabole est tournée vers le bas. Donc $4-x^2 \geq 0$ pour x entre les racines (incluses). L'ensemble de définition de f est $D_f=[-2\,;\,2]$.

2. Dérivabilité et dérivée

a) Justification de la dérivabilité sur]-2; 2[

La fonction f est le produit de deux fonctions :

- $u: x \mapsto 2 x$, fonction affine, dérivable sur \mathbb{R} , donc sur]-2; 2[.
- $v: x \mapsto \sqrt{4-x^2}$. C'est la composée de la fonction $w: x \mapsto 4-x^2$ (polynôme, dérivable sur \mathbb{R}) suivie de la fonction racine carrée $t \mapsto \sqrt{t}$ (dérivable sur $\mathbb{R}_+^* =]0, +\infty[$).

La fonction v est dérivable là où w(x)>0. $w(x)>0 \iff 4-x^2>0 \iff x\in]-2\,;\,2[$. Donc, la fonction v est dérivable sur $]-2\,;\,2[$.

Comme produit de deux fonctions dérivables sur] -2; 2[, la fonction $f=u\times v$ est dérivable sur] -2; 2[.

b) Calcul de f'(x) et étude de son signe

On utilise la formule de dérivation d'un produit (uv)'=u'v+uv'. Avec $u(x)=2-x \implies u'(x)=-1$. Avec $v(x)=\sqrt{4-x^2} \implies v'(x)=\frac{w'(x)}{2\sqrt{w(x)}}=\frac{-2x}{2\sqrt{4-x^2}}=\frac{-x}{\sqrt{4-x^2}}$.

Pour $x \in]-2; 2[:$

$$f'(x) = u'(x)v(x) + u(x)v'(x)$$

$$= (-1)\sqrt{4 - x^2} + (2 - x)\left(\frac{-x}{\sqrt{4 - x^2}}\right)$$

$$= \frac{-\sqrt{4 - x^2} \times \sqrt{4 - x^2} - x(2 - x)}{\sqrt{4 - x^2}}$$

$$= \frac{-(4 - x^2) - 2x + x^2}{\sqrt{4 - x^2}}$$

$$= \frac{-4 + x^2 - 2x + x^2}{\sqrt{4 - x^2}}$$

$$= \frac{2x^2 - 2x - 4}{\sqrt{4 - x^2}}$$

$$= \frac{2(x^2 - x - 2)}{\sqrt{4 - x^2}}$$

Sur l'intervalle] -2 ; 2[, le dénominateur $\sqrt{4-x^2}$ est strictement positif. Le facteur 2 au numérateur est positif. Le signe de f'(x) sur] -2 ; 2[est donc le même que le signe du polynôme $P(x) = x^2 - x - 2$].

3. Dérivabilité en x = -2 et x = 2

Pour étudier la dérivabilité aux bornes, on calcule la limite du taux d'accroissement. On a $f(-2)=(2-(-2))\sqrt{4-(-2)^2}=4\times\sqrt{0}=0$. On a $f(2)=(2-2)\sqrt{4-2^2}=0\times\sqrt{0}=0$.

<u>En x=-2</u>: On étudie la limite quand $x \to -2^+$ (car $D_f=[-2,2]$).

$$\begin{split} \lim_{x \to -2^+} \frac{f(x) - f(-2)}{x - (-2)} &= \lim_{x \to -2^+} \frac{(2 - x)\sqrt{4 - x^2}}{x + 2} \\ &= \lim_{x \to -2^+} \frac{(2 - x)\sqrt{(2 - x)(2 + x)}}{x + 2} \\ &= \lim_{x \to -2^+} \frac{(2 - x)\sqrt{2 - x}\sqrt{x + 2}}{\sqrt{x + 2}\sqrt{x + 2}} \quad (\operatorname{car} x + 2 > 0 \operatorname{quand} x \to -2^+) \\ &= \lim_{x \to -2^+} \frac{(2 - x)\sqrt{2 - x}}{\sqrt{x + 2}} = \lim_{x \to -2^+} \frac{(2 - x)^{3/2}}{\sqrt{x + 2}} \end{split}$$

Quand $x \rightarrow -2^+$, le numérateur tend vers $(2-(-2))^{3/2}=4^{3/2}=(\sqrt{4})^3=2^3=8$. Quand $x \rightarrow -2^+$, le numérateur tend vers $(2-(-2))^{3/2}=4^{3/2}=(\sqrt{4})^3=2^3=8$.

le dénominateur $\sqrt{x+2}$ tend vers $\sqrt{0^+}=0^+$. La limite est donc $\frac{8}{0^+}=+\infty$. La fonction f n'est pas dérivable en x=-2.

En x=2: On étudie la limite quand $x\to 2^-$ (car $D_f=[-2,2]$).

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{(2 - x)\sqrt{4 - x^2}}{x - 2}$$

$$= \lim_{x \to 2^{-}} \frac{-(x - 2)\sqrt{(2 - x)(2 + x)}}{x - 2}$$

$$= \lim_{x \to 2^{-}} -\sqrt{(2 - x)(2 + x)}$$

$$= -\sqrt{(2 - 2)(2 + 2)} = -\sqrt{0 \times 4} = -\sqrt{0} = 0$$

La limite est finie et vaut 0. La fonction f est dérivable en x=2, et f'(2)=0.

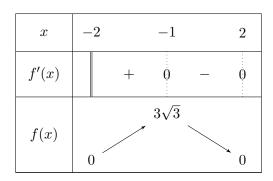
Interprétation graphique :

- En x = -2, la limite du taux d'accroissement est $+\infty$. La courbe f admet une **demi-tangente** verticale dirigée vers le haut au point d'abscisse -2 (le point (-2,0)).
- En x=2, la limite du taux d'accroissement est 0. La courbe f admet une **demi-tangente** horizontale au point d'abscisse 2 (le point (2,0)).

4. Tableau de variations de f

Le signe de f'(x) sur]-2; 2[est celui de $P(x)=x^2-x-2$. Calculons le discriminant de P(x): $\Delta=(-1)^2-4(1)(-2)=1+8=9=3^2$. Les racines sont $x_1=\frac{-(-1)-3}{2(1)}=\frac{1-3}{2}=-1$ et $x_2=\frac{1+3}{2}=2$. Le polynôme P(x) est du signe de a=1 (positif) à l'extérieur des racines et négatif entre les racines. Sur $D_f=[-2\,;\,2]$, les racines pertinentes sont x=-1 et x=2. Donc, $P(x)\geq 0$ sur $[-2\,;\,-1]$ et $P(x)\leq 0$ sur $[-1\,;\,2]$. Par conséquent, $f'(x)\geq 0$ sur $[-2\,;\,-1]$ et $f'(x)\leq 0$ sur $[-1\,;\,2]$.

Calculons la valeur au maximum local x = -1 : $f(-1) = (2-(-1))\sqrt{4-(-1)^2} = (3)\sqrt{4-1} = 3\sqrt{3}$.



Note : La double barre sous x=-2 dans la ligne de f'(x) indique la non-dérivabilité en ce point, conformément à l'étude de la question 3.