

Exercice 1:

Calculer les dérivées des fonctions suivantes :

- 1. f est définie sur \mathbb{R} par $f(x) = (x^2 3x + 7)^5$.
- 2. g est définie sur \mathbb{R} par $g(x) = \frac{1}{(x^2 + 5)^3}$.
- 3. h est définie sur \mathbb{R}^* par $h(x) = xe^{\frac{1}{x}}$.

Exercice 2

On considère la fonction g définie sur [-4; 4] par $g(x) = -x^3 + 3x^2 - 1$.

On note C_g la courbe représentative de la fonction g.

- 1. Étudier les variations de la fonction g sur [-4;4] et dresser le tableau des variations.
- 2. Déterminer l'équation de la tangente à la courbe C_g au point d'abscisse 1.
- 3. Étudier la convexité de la fonction g et montrer que la courbe C_g admet un point d'inflexion.
- 4. Déduire des questions précédentes le signe de la fonction h définie sur [-4;4] par h(x) = g(x) (3x 2).

Exercice 3

Soit f la fonction définie sur $\mathbb R$ par $f(x)=10x^2e^{ax-1}$ où a est un nombre réel.

On note C_f la courbe représentative de f et on s'intéresse à ses éventuels points d'inflexion.

- 1. Démontrer que C_f admet deux points d'inflexion pour tout réel a non nul.
- 2. Étudier le cas où a=0.

Exercice 4

Soit f la fonction définie par $f(x)=(2-x)\sqrt{4-x^2}$ et C sa courbe représentative.

- 1. Déterminer l'ensemble de définition de f.
- 2. (a) Justifier que f est dérivable sur]-2; 2[.
 - (b) Déterminer la fonction dérivée de f et montrer que, sur $]-2\,;\,2[$, f'(x) est du signe de x^2-x-2 .
- 3. Étudier la dérivabilité de f en x=-2, puis en x=2; donner une interprétation graphique des résultats obtenus.
- 4. Donner alors le tableau de variations de f.