

Exercice 1

On définit la suite (z_n) par $z_0=6$ et, pour tout $n\in\mathbb{N}$,

$$z_{n+1} = 4z_n - 5.$$

Montrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$z_n = \frac{5 + 13 \cdot 4^n}{3}.$$

Exercice 2

Pour tout entier naturel $n \ge 1$, on pose

$$T_n = \sum_{k=1}^{n} (3k+1)^2.$$

Montrer que, pour tout $n \geq 1$,

$$T_n = \frac{n(6n^2 + 15n + 11)}{2}.$$

Exercice 3

Soit la suite (w_n) définie par $w_0=3$ et, pour tout $n\geq 0$,

$$w_{n+1} = w_n + 3n + 4.$$

Démontrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$w_n = \frac{3}{2}n^2 + \frac{5}{2}n + 3.$$

Exercice 4

On considère la suite (u_n) définie par

$$u_0 = -\sqrt{3}, \qquad u_{n+1} = \frac{1}{5}u_n - 1.$$

Montrer que pour tout $n \in \mathbb{N}$, on a

$$-2 \le u_n \le -0.5.$$

Exercice 5

Soit (v_n) définie par

$$v_1 = 1,$$
 $v_{n+1} = \frac{v_n}{\sqrt{v_n^2 + 1}}$ $(n \ge 1).$

- 1. Calculer v_2 et v_3 .
- 2. Conjecturer une expression simple de v_n en fonction de n.
- 3. Démontrer cette conjecture par récurrence.