

Exercice 1 — Suites arithmétique et géométrique

1. (u_n) est géométrique de raison $q=\frac{1}{3}$ et $u_3=729$.

$$u_n = u_3 q^{n-3} \quad \Rightarrow \quad u_7 = 729 \left(\frac{1}{3}\right)^4 = \frac{729}{81} = \boxed{9}.$$

2. (v_n) est arithmétique de raison r=5 et $v_{10}=8$.

$$v_{10} = v_1 + 9r \quad \Rightarrow \quad v_1 = v_{10} - 9 \times 5 = 8 - 45 = \boxed{-37}.$$

Exercice 2 — Variations de la suite $w_n = 2n^2 - 7n$

On étudie les accroissements :

$$w_{n+1} - w_n = 2((n+1)^2 - n^2) - 7 = 4n - 5.$$

Ainsi $w_{n+1}-w_n<0$ si $n<\frac{5}{4}$, =0 si $n=\frac{5}{4}$ (valeur non entière), et >0 si $n>\frac{5}{4}$. Pour $n\in\mathbb{N}$:

$$\begin{cases} \text{d\'ecroissante de } n=0 \text{ vers } n=2,\\ \text{croissante \`a partir de } n=2. \end{cases}$$

Calculs utiles : $w_0=0$, $w_1=-5$, $w_2=-6$ (minimum atteint en n=2), $w_3=-3$.

La suite décroît jusqu'à n=2 puis croît pour $n\geq 2.$

n	0		$\frac{5}{4}$		$+\infty$
4n-5		_	0	+	

Exercice 3 — Suite définie par récurrence : $u_0=-4$, $u_{n+1}=\frac{1}{2}u_n+6$

1.
$$u_1 = \frac{1}{2}(-4) + 6 = 4$$
, $u_2 = \frac{1}{2} \cdot 4 + 6 = 8$.

$$u_1 = 4$$
 ; $u_2 = 8$

2. Différences : $u_1-u_0=8$, $u_2-u_1=4\Rightarrow$ pas arithmétique. Rapports : $\frac{u_1}{u_0}=-1$, $\frac{u_2}{u_1}=2\Rightarrow$ pas géométrique.

La suite n'est ni arithmétique ni géométrique.

Exercice 4 – Modèle bénévoles : $u_{n+1} = 0.8 u_n + 12$, $u_0 = 80$

- 1. $u_1 = 0.8 \times 80 + 12 = 76$.
- 2. $u_0 = 80$. Relation : $u_{n+1} = 0.8 u_n + 12$.
- 3. Récurrence : $u_{n+1}-60=0.8(u_n-60)\geq 0$, donc $u_{n+1}\geq 60$. Et $u_n-u_{n+1}=0.2u_n-12\geq 0$ dès que $u_n\geq 60$. Donc $60\leq u_{n+1}\leq u_n$.
- 4. Posons $v_n=u_n-60$. Alors $v_{n+1}=0.8v_n$. (v_n) est géométrique de raison 0.8, $v_0=20$.

$$v_n = 20(0.8)^n$$
, $u_n = 60 + 20(0.8)^n$.

Exercice 5 — Suite $u_{n+1} = \sqrt{u_n} + 4$, $u_0 = 12$

Objectif. Montrer que pour tout $n \in \mathbb{N}$:

$$3 \le u_{n+1} \le u_n \le 12$$

On procède par une seule récurrence sur la propriété

$$P_n: 3 \le u_{n+1} \le u_n \le 12.$$

Initialisation

Pour n = 0: $u_0 = 12$ et

$$u_1 = 4 + \sqrt{u_0} = 4 + \sqrt{12} \approx 7,46.$$

Alors

$$3 \le u_1 \le u_0 \le 12$$
,

donc P_0 est vraie.

Hérédité

Supposons P_n vraie pour un certain $n \ge 0$, c'est-à-dire

$$3 \le u_{n+1} \le u_n \le 12$$
.

La fonction $x\mapsto \sqrt{x}$ est strictement croissante sur $[0,+\infty)$, donc

$$\sqrt{3} \leq \sqrt{u_{n+1}} \leq \sqrt{u_n} \leq \sqrt{12}.$$

En ajoutant 4 membre à membre, on obtient

$$4 + \sqrt{3} \le 4 + \sqrt{u_{n+1}} = u_{n+2} \le 4 + \sqrt{u_n} = u_{n+1} \le 4 + \sqrt{12}.$$

Comme $4+\sqrt{3}>3$ et $4+\sqrt{12}<12$, on en déduit

$$3 \le u_{n+2} \le u_{n+1} \le 12,$$

c'est-à-dire P_{n+1} vraie.

Conclusion

Par récurrence, pour tout $n \in \mathbb{N}$,

$$\boxed{3 \le u_{n+1} \le u_n \le 12}.$$

En particulier, (u_n) est décroissante et bornée inférieurement (par 3), donc convergente.