

Exercice 1

- 1. Soit (u_n) une suite géométrique de raison $q=\frac{1}{3}$ telle que $u_3=729$. Déterminer, en justifiant, la valeur de u_7 .
- 2. Soit (v_n) une suite arithmétique de raison r=5 telle que $v_{10}=8$. Déterminer, en justifiant, la valeur de v_1 .

Exercice 2

Étudier les variations de la suite (w_n) définie, pour tout $n \in \mathbb{N}$, par

$$w_n = 2n^2 - 7n.$$

Exercice 3

Soit (u_n) la suite définie par

$$\begin{cases} u_0 = -4, \\ u_{n+1} = \frac{1}{2}u_n + 6. \end{cases}$$

- 1. Calculer u_1 et u_2 .
- 2. La suite est-elle arithmétique, géométrique? Justifier.

Exercice 4

Une association suit le nombre de bénévoles inscrits à ses activités. En 2020, il y a 80 bénévoles. Chaque année, environ $20\,\%$ des bénévoles arrêtent leur participation, et 12 nouvelles personnes s'inscrivent. On note u_n le nombre de bénévoles en 2020+n.

- 1. Déterminer le nombre de bénévoles en 2021.
- 2. Donner la valeur de u_0 et justifier que, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 0.8 u_n + 12.$$

3. Montrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$60 \le u_{n+1} \le u_n.$$

4. Soit (v_n) la suite définie par $v_n=u_n-60$. Montrer que (v_n) est géométrique et préciser sa raison.

Exercice 5

Soit (u_n) la suite définie par $u_0=12$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{u_n} + 4.$$

Montrer par récurrence que, pour tout $n \in \mathbb{N}$,

$$3 \le u_{n+1} \le u_n \le 12.$$