

Correction

Exercice 1

Pour chaque affirmation, on précise Vrai/Faux et on justifie.

1. Affirmation 1. « Si (u_n) est une suite telle que $n \geq 35$ alors $\lim_{n \to +\infty} u_n = -\infty$. »

Cette phrase est **incohérente** : la condition « $n \geq 35$ » porte sur l'indice (qui vaut de toute façon $n \to +\infty$) et non sur les valeurs de la suite. Aucune information sur u_n n'est fournie permettant de conclure à une limite $-\infty$.

Conclusion : Faux. (L'énoncé semble affecté par une coquille; la proposition telle quelle n'est pas valable.)

2. Affirmation 2. Si $\lim_{n\to +\infty}u_n=+\infty$ et $\lim_{n\to +\infty}v_n=0$ avec $v_n>0$, alors $\lim_{n\to +\infty}(u_nv_n)=+\infty$.

Faux. Contre-exemple : $u_n = n$ et $v_n = \frac{1}{n}$ (avec $v_n > 0$). Alors $u_n v_n = 1$ pour tout n, donc $\lim u_n v_n = 1 \neq +\infty$.

Conclusion : Faux .

3. **Affirmation 3.** La suite $p_n = n^2 - 42n + 4$ est strictement décroissante.

Calculons la différence :

$$p_{n+1} - p_n = ((n+1)^2 - 42(n+1) + 4) - (n^2 - 42n + 4) = 2n - 41.$$

On a $p_{n+1}-p_n<0$ si $n\leq 20$ et >0 si $n\geq 21$. La suite décroît donc jusqu'à n=20 puis croît à partir de n=21.

Conclusion : Faux (elle n'est pas strictement décroissante sur tout \mathbb{N}).

4. **Affirmation 4.** La suite $w_n = -3n + 4$ est majorée par 4.

Pour tout $n \in \mathbb{N}$, $w_n \leq w_0 = 4$ et la suite est décroissante.

Conclusion : Vrai (majorée par 4).

Exercice 2

1. On considère (u_n) définie par $u_0 = 0$ et $u_{n+1} = 3u_n - 2$.

Démonstration par récurrence que $u_n = 1 - 3^n$ pour tout $n \in \mathbb{N}$.

Initialisation. Pour n=0, $u_0=0$ et $1-3^0=1-1=0$: la formule est vraie.

Hérédité. Supposons qu'il existe $n \in \mathbb{N}$ tel que $u_n = 1 - 3^n$. Alors

$$u_{n+1} = 3u_n - 2 = 3(1-3^n) - 2 = 3 - 3^{n+1} - 2 = 1 - 3^{n+1}.$$

La propriété est vraie au rang n+1.

Conclusion. Par récurrence, pour tout $n \in \mathbb{N}$, $u_n = 1 - 3^n$

Remarque sur la limite. Comme $3^n \to +\infty$, on a $u_n \to -\infty$.

- 2. Limites des suites suivantes.
 - a) On interprète (au vu de la mise en page)

$$u_n = \frac{3 - \frac{1}{n^2}}{n+1}.$$

Alors $3-\frac{1}{n^2} \to 3$ et $n+1 \to +\infty$, donc par quotient

$$\lim_{n \to +\infty} u_n = 0$$

b) (Factorisation détaillée). Pour $v_n=3n^2-8n+1$, on factorise par n^2 :

$$v_n = n^2 \left(3 - \frac{8}{n} + \frac{1}{n^2} \right).$$

Or
$$n^2 \to +\infty$$
 et

$$3 - \frac{8}{n} + \frac{1}{n^2} \xrightarrow[n \to \infty]{} 3 > 0.$$

Plus précisément, pour $n \geq 3$,

$$3 - \frac{8}{n} + \frac{1}{n^2} \ge 3 - \frac{8}{3} = \frac{1}{3} > 0,$$

donc
$$v_n \geq \frac{1}{3} n^2 \xrightarrow[n \to \infty]{} +\infty$$
. Ainsi

$$\lim_{n \to +\infty} v_n = +\infty$$

c)
$$t_n = \left(\frac{n^2-3}{n^2}\right)(6-n) = \left(1-\frac{3}{n^2}\right)(6-n)$$
. Or $1-\frac{3}{n^2} \to 1$ et $6-n \to -\infty$, donc

$$\boxed{\lim_{n \to +\infty} t_n = -\infty}.$$

Exercice 3

On considère $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = f(u_n)$$
 avec $f(x) = \frac{3-x}{8-5x}$.

1. Calculs numériques et conjecture.

$$u_1 = f(1) = \frac{2}{3} \approx 0.667,$$
 $u_2 = f\left(\frac{2}{3}\right) = \frac{1}{2} = 0.5,$ $u_3 = f\left(\frac{1}{2}\right) = \frac{5}{11} \approx 0.455.$

On conjecture que (u_n) est **décroissante** et **bornée inférieurement**.

2. Étude rapide de f**.** Le domaine de définition est $\mathbb{R}\setminus\left\{\frac{8}{5}\right\}$. On dérive :

$$f'(x) = \frac{-1 \cdot (8 - 5x) - (3 - x) \cdot (-5)}{(8 - 5x)^2} = \frac{7}{(8 - 5x)^2} > 0.$$

Ainsi f est **strictement croissante** sur chacun des intervalles de son domaine.

3. Méthode souhaitée : récurrence simple par composition. (i) Point fixe pertinent. L'équation x=f(x) équivaut à $5x^2-9x+3=0$, d'où

$$\alpha = \frac{9 - \sqrt{21}}{10} \approx 0,4417$$
 et $\beta = \frac{9 + \sqrt{21}}{10} \approx 1,3583.$

On retient le point fixe dans [0,1]: $f(\alpha) = \alpha$.

(ii) Invariance de $[\alpha, 1]$ par récurrence en composant par f.

Initialisation. On a bien $\alpha \leq u_0 = 1 \leq 1$.

Hérédité. Supposons $\alpha \leq u_n \leq 1$. Comme f est **croissante**, on peut **composer** l'inégalité par f sans changer le sens :

$$f(\alpha) = \alpha \le f(u_n) = u_{n+1} \le f(1) = \frac{2}{3} \le 1.$$

Ainsi, par récurrence, $\alpha \leq u_n \leq 1$ pour tout n

(iii) Décroissance de (u_n) par récurrence en composant par f.

Initialisation. $u_1 = \frac{2}{3} \le 1 = u_0$.

Hérédité. Supposons $u_n \leq u_{n-1}$. Comme f est **croissante**, on compose par f sans changer le sens :

$$u_{n+1} = f(u_n) \le f(u_{n-1}) = u_n.$$

Donc (u_n) est décroissante

(iv) Convergence et limite. La suite (u_n) est décroissante et minorée par α , donc convergente. Soit $\lim_{n\to\infty}u_n=\ell\in[\alpha,1]$. Par passage à la limite dans $u_{n+1}=f(u_n)$ (continuité de f sur $[\alpha,1]$), on obtient

$$\ell=f(\ell)$$
, donc

$$5\ell^2 - 9\ell + 3 = 0 \quad \Rightarrow \quad \ell \in \left\{ \frac{9 \pm \sqrt{21}}{10} \right\}.$$

Comme
$$\ell \in [0,1]$$
,
$$\boxed{\ell = \frac{9 - \sqrt{21}}{10} \approx 0.4417}.$$

Conclusion de l'exercice 3. (u_n) est décroissante, bornée dans $[\alpha,1]$ et

$$\lim_{n \to \infty} u_n = \frac{9 - \sqrt{21}}{10} \,.$$

x	0 -	$\frac{0 - \sqrt{21}}{10}$	-	1
$5x^2 - 9x + 3$	+	0	_	

Lecture : l'unique point fixe α dans [0,1] est la limite. Les récurrences utilisent uniquement que f est croissante.