

Exercice 1:

Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des trois réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point. Les quatre questions sont indépendantes.

- 1. Supposons que pour un entier $n \ge 2$, la propriété P(n) : " $5^n \ge 4^n + 3^n$ " soit vraie. On cherche à montrer que P(n+1) est vraie. P(n+1) correspond à :
 - a. $5^n > 4^{n+1} + 3^{n+1}$
 - b. $5^{n+1} \ge 4^{n+1} + 3^{n+1}$ (Réponse correcte)
 - c. $\overline{5^{n+1} \ge 4^n + 3^n}$

Justification : La propriété P(n+1) est obtenue en remplaçant n par n+1 dans l'expression de P(n).

- 2. Si une propriété P(n) est vraie pour n=3 (initialisation) et est héréditaire à partir de n=6, alors :
 - a. elle est vraie pour tout $n \ge 3$,
 - b. elle est vraie pour tout $n \ge 6$. (Réponse correcte)
 - c. on ne peut rien conclure.

Justification : L'initialisation est à n=3, mais l'hérédité n'est garantie qu'à partir de n=6. La propriété pourrait être fausse pour n=4 et n=5. On ne peut donc conclure que pour $n\geq 6$.

- 3. Pour tout entier naturel n, P(n) est la propriété " $n^2 + 3$ est un multiple de 3".
 - a. P(0) est vraie. (Réponse correcte)
 - b. P(1) est vraie.
 - c. Pour tout entier naturel n, P(n) est vraie.

Justification:

- Pour n = 0, P(0) signifie " $0^2 + 3 = 3$ est un multiple de 3", ce qui est vrai.
- Pour n=1, P(1) signifie " $1^2+3=4$ est un multiple de 3", ce qui est faux.
- La proposition (c) est fausse, car P(1) est fausse. P(n) n'est pas vraie pour tout n. Par exemple, pour n=2, $2^2+3=7$ n'est pas un multiple de 3.
- 4. (u_n) est la suite définie par $u_0=1$ et, pour tout entier naturel n, $u_{n+1}=3u_n+2$. Pour tout entier naturel n, on note P(n) la propriété : " $u_n=2\times 3^n-1$ ". On suppose que, pour un entier naturel k, la propriété P(k) est vraie.
 - a. P(k+1) est la propriété : " $u_{k+1} = 2 \times 3^k 1$ ".
 - b. P(k+1) est vraie. (Réponse correcte, *mais nécessite une démonstration*)
 - c. la propriété n'est pas héréditaire.

Justification et démonstration de l'hérédité (pour montrer que la réponse b. est correcte) :

* P(k+1) est la propriété " $u_{k+1}=2\times 3^{k+1}-1$ ". La proposition (a) est donc fausse. * Montrons que si P(k) est vraie, alors P(k+1) est vraie (hérédité). On suppose que $u_k=2\times 3^k-1$. Alors :

$$u_{k+1}=3u_k+2$$

$$=3(2\times 3^k-1)+2 \quad \text{(par hypothèse de récurrence } P(k))$$

$$=2\times 3\times 3^k-3+2$$

$$=2\times 3^{k+1}-1$$

On retrouve bien l'expression de P(k+1). Donc, si P(k) est vraie, alors P(k+1) est vraie. La propriété est héréditaire. * L'initialisation est facile : $u_0=1$ et $2\times 3^0-1=2-1=1$, Donc P(0) est vraie. * Puisque P(0) est vraie et que la propriété est héréditaire, la propriété est vraie pour tout n. La réponse correcte est donc bien (b), *mais la question est un peu ambiguë car elle ne demande pas de *prouver* que P(k+1) est vraie, juste de l'affirmer*. La proposition (c) est fausse.

Exercice 2:

1) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, on a : $5 < u_n \le 8$.

Soit P(n) la propriété : " $5 < u_n \le 8$ ". Nous allons démontrer P(n) par récurrence.

- Initialisation (n = 0): On a $u_0 = 8$. Comme $5 < 8 \le 8$, la propriété P(0) est vraie.
- **Hérédité**: Supposons que P(k) est vraie pour un certain entier $k \ge 0$, c'est-à-dire que $5 < u_k \le 8$. Montrons que P(k+1) est vraie, c'est-à-dire que $5 < u_{k+1} \le 8$.

On a $u_{k+1} = 0, 2u_k + 4$. Par hypothèse de récurrence, $5 < u_k \le 8$. Multiplions cette inégalité par 0,2 (qui est positif, donc conserve l'ordre) :

$$0, 2 \cdot 5 < 0, 2 \cdot u_k \le 0, 2 \cdot 8$$
$$1 < 0, 2u_k \le 1, 6$$

Ajoutons 4 à chaque membre de l'inégalité :

$$1 + 4 < 0, 2u_k + 4 \le 1, 6 + 4$$
$$5 < u_{k+1} \le 5, 6$$

Comme $5 < u_{k+1} \le 5, 6$ et que 5, 6 < 8, on a bien $5 < u_{k+1} \le 8$. Donc, P(k+1) est vraie.

- Conclusion : La propriété P(n) est initialisée au rang 0 et elle est héréditaire. Par le principe de récurrence, P(n) est vraie pour tout $n \in \mathbb{N}$. Donc, pour tout $n \in \mathbb{N}$, $5 < u_n \le 8$.
- 2) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, la suite (u_n) est décroissante.

Soit Q(n) la propriété : " $u_{n+1} \le u_n$ ". Nous allons démontrer Q(n) par récurrence.

- Initialisation (n=0): On a $u_0=8$ et $u_1=0, 2\cdot 8+4=1, 6+4=5, 6$. Comme $5, 6\leq 8$, $u_1\leq u_0$, donc Q(0) est vraie.
- **Hérédité**: Supposons que Q(k) est vraie pour un certain entier $k \ge 0$, c'est-à-dire que $u_{k+1} \le u_k$. Montrons que Q(k+1) est vraie, c'est-à-dire que $u_{k+2} \le u_{k+1}$.

On a $u_{k+2}=0, 2u_{k+1}+4$ et $u_{k+1}=0, 2u_k+4$. Par hypothèse de récurrence, $u_{k+1}\leq u_k$. Multiplions par 0,2 (positif) :

$$0, 2u_{k+1} \leq 0, 2u_k$$

Ajoutons 4:

$$0, 2u_{k+1} + 4 \le 0, 2u_k + 4$$
$$u_{k+2} \le u_{k+1}$$

Donc, Q(k+1) est vraie.

- Conclusion : La propriété Q(n) est initialisée au rang 0 et elle est héréditaire. Par le principe de récurrence, Q(n) est vraie pour tout $n \in \mathbb{N}$. Donc, pour tout $n \in \mathbb{N}$, la suite (u_n) est décroissante.
- 3) a) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, on a : $u_n = 3(0,2)^n + 5$

Soit R(n) la propriété : " $u_n = 3(0,2)^n + 5$ ". Nous allons démontrer R(n) par récurrence.

- Initialisation (n = 0): On a $u_0 = 8$. Et $3(0,2)^0 + 5 = 3 \cdot 1 + 5 = 8$. Donc, R(0) est vraie.
- **Hérédité**: Supposons que R(k) est vraie pour un certain entier $k \ge 0$, c'est-à-dire que $u_k = 3(0,2)^k + 5$. Montrons que R(k+1) est vraie, c'est-à-dire que $u_{k+1} = 3(0,2)^{k+1} + 5$.

On a $u_{k+1} = 0, 2u_k + 4$. Par hypothèse de récurrence, $u_k = 3(0,2)^k + 5$. Substituons :

$$u_{k+1} = 0, 2 \cdot (3(0,2)^k + 5) + 4$$

$$u_{k+1} = 0, 2 \cdot 3(0,2)^k + 0, 2 \cdot 5 + 4$$

$$u_{k+1} = 3(0,2)^{k+1} + 1 + 4$$

$$u_{k+1} = 3(0,2)^{k+1} + 5$$

Donc, R(k+1) est vraie.

- Conclusion : La propriété R(n) est initialisée au rang 0 et elle est héréditaire. Par le principe de récurrence, R(n) est vraie pour tout $n \in \mathbb{N}$. Donc, pour tout $n \in \mathbb{N}$, $u_n = 3(0,2)^n + 5$.

3) b) Écrire une fonction en Python qui calcule u_N pour un $N \in \mathbb{N}$ quelconque.

 $\mathsf{def}\,\mathsf{calculer}_u(n): """Calcule letermeu_n de la suite."""return 3*(0.2)**n+5$

3) c) Écrire le programme employant cette fonction.

 $\mathsf{def} \ \mathsf{calculer}_u(n) : """ Calcule letermeu_n de la suite.""" return <math>3*(0.2)**n+5$

Demander à l'utilisateur d'entrer la valeur de n n = int(input("Entrez la valeur de n : "))

Calculer $u_n enutilis ant la fonction resultat = calculer_u(n)$

Afficher le résultat print(" $u_n + str(n) + " = " + str(resultat)$)

Alternative pour afficher $u_n pour nallant de 010 par exemple. for in range (11): print ("u", i, " = ", calculer_u(i))$

Exercice 3:

Démontrer par récurrence que pour tout entier naturel $n \geq 2$, on a :

$$\left(1 - \frac{1}{2^2}\right) \times \left(1 - \frac{1}{3^2}\right) \times \dots \times \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$

Soit P(n) la propriété : " $\left(1-\frac{1}{2^2}\right) \times \left(1-\frac{1}{3^2}\right) \times \cdots \times \left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}$ ". Nous allons démontrer P(n) par récurrence pour $n \geq 2$.

– Initialisation (n = 2):

Pour n=2, le membre de gauche est :

$$\left(1 - \frac{1}{2^2}\right) = 1 - \frac{1}{4} = \frac{3}{4}$$

Le membre de droite est :

$$\frac{2+1}{2\cdot 2} = \frac{3}{4}$$

Comme les deux membres sont égaux, la propriété P(2) est vraie.

– Hérédité :

Supposons que P(k) est vraie pour un certain entier $k \ge 2$, c'est-à-dire que :

$$\left(1 - \frac{1}{2^2}\right) \times \left(1 - \frac{1}{3^2}\right) \times \dots \times \left(1 - \frac{1}{k^2}\right) = \frac{k+1}{2k}$$

Montrons que P(k+1) est vraie, c'est-à-dire que :

$$\left(1 - \frac{1}{2^2}\right) \times \left(1 - \frac{1}{3^2}\right) \times \dots \times \left(1 - \frac{1}{k^2}\right) \times \left(1 - \frac{1}{(k+1)^2}\right) = \frac{(k+1)+1}{2(k+1)} = \frac{k+2}{2(k+1)}$$

Partons du membre de gauche de P(k+1) et utilisons l'hypothèse de récurrence :

On retrouve bien le membre de droite de P(k+1). Donc, P(k+1) est vraie.

- Conclusion:

La propriété P(n) est initialisée au rang 2 et elle est héréditaire. Par le principe de récurrence, P(n) est vraie pour tout entier naturel $n \ge 2$.